Evaluating Proposals Changing the Carrier Common Line Pool

Carol L. Weinhaus and Mark L. Lemler

Program on Information Resources Policy

Harvard University

Center for Information Policy Research

Cambridge, Massachusetts

A publication of the Program on Information Resources Policy.

Evaluating Proposals Changing the Carrier Common Line Pool

Carol L. Weinhaus and Mark L. Lemler

January 1987, P-87-1

Project Director
Anthony G. Oettinger

The Program on Information Resources Policy is jointly sponsored by Harvard University and the Center for Information Policy Research.

Chairman Anthony G. Oettinger

Managing Director
John C. LeGates

Executive Director
John F. McLaughlin

Executive Director Oswald H. Ganley

Mark Lemler, District Manager - Strategic Access Planning at AT&T Communications, prepared this paper as a research fellow with the Program, analyzing the telecommunications industry cost structure and the FCC's Access Charge Plan.

Carol L. Weinhaus is Research Analyst in the Program on Information Resources Policy.

Copyright © 1987 by the Program on Information Resources Policy. Not to be reproduced in any form without written consent from the Program on Information Resources Policy. Harvard University, 200 Aiken, Cambridge, MA 02138. (617) 495-4114. Printed in the United States of America.

PROGRAM ON INFORMATION RESOURCES POLICY

Harvard University

Center for Information Policy Research

Affiliates

Action for Children's Television American Telephone & Telegraph Co.

Ameritech Publishing

Anderson, Benjamin, Read & Haney, Inc.

Apple Computer, Inc. Arthur D. Little, Inc. Auerbach Publishers Inc.

Auromated Marketing Systems

BellSouth Corporation

Bell Atlantic

Booz-Allen & Hamilton, Inc.

CBS Broadcast Group

Commission of the European Communities

Communications Workers of America

Computer & Communications Industry Assoc.

Copley Newspapers Cowles Media Co.

Dai-Ichi Kangyo Bank, Ltd. (Japan)

Databit Inc.

Data Communications Corp. of Korea

Dialog Information Services, Inc.

Digital Equipment Corp.

Direction Generale des Telecommunications (France)

Dow Jones & Co., Inc.

Economics and Technology, Inc.

EIC/Intelligence Inc.

Gannett Co., Inc.

GTE Corporation

Hitachi Research Institute (Japan)

Honeywell, Inc.

IBM Corp.

Information Gatekeepers, Inc.

Information Industry Association

International Data Corp.

International Resource Development, Inc.

Invoco AB Gunnar Bergvall (Sweden)

Knowledge Industry Publications, Inc.

Lee Enterprises, Inc.

John and Mary R. Markle Foundation

Martin Marietta Corp.

MCI Telecommunications, Inc.

McKinsey & Co., Inc.

Mead Data Central

MITRE Corp.

Motorola, Inc.

National Telephone Cooperative Assoc.

The New York Times Co.

NEC Corp. (Japan)

Nippon Telegraph & Telephone Corp. (Japan)

Northern Telecom Ltd. (Canada)

NOVA Systems, Inc.

NYNEX

Ing. C. Olivetti & C., S.p.A. (Italy)

The Overseas Telecommunications Commission

(Australia)

Pacific Telesis Group

Pitney Bowes, Inc.

Public Agenda Foundation

Reader's Digest Association, Inc.

Research Institute of Telecommunications and

Economics (Japan)

RESEAU (Italy)

Salomon Brothers

Scaife Family Charitable Trusts

SEAT S.P.A. (Italy)

Seiden & de Cuevas, Inc.

Southern New England Telecommunications Corp.

State of California Public Utilities Commission

State of Minnesota Funding

State of Nebraska Telecommunications and

Information Center

Telecommunications Research Action Center

(TRAC)

Telecom Plus International, Inc.

Telematix International Ltd.

Third Class Mail Association

Times Mirror Co.

TRW Inc.

United States Government:

National Telecommunications and Information

Administration

Department of Health and Human Services

National Library of Medicine

Department of State

Office of Communications

Federal Communications Commission

Federal Emergency Management Agency

National Aeronautics and Space Administration

National Security Agency

U.S. Army:

Office of the Assistant Chief of Staff for

Information Management

United States Postal Rate Commission

US West

United Telecommunications, Inc.

The Washington Post Co.

Acknowledgments

The authors thank Nathan Eigerman for his assistance in the development of the simulator on the computer and Ingrid Johnson for her skill and patience on the charts in this paper.

Special thanks are due to the following persons who reviewed and commented critically on drafts of this report. These reviewers and the Program's affiliates are not, however, responsible for or necessarily in agreement with the views expressed herein, nor should they be blamed for any errors of fact or interpretation.

John Arcate Elwood R. Kerkeslager
Paul Berman Paul F. Levy
James D. Dunbar James M. McCraney
Sam M. Epstein John R. Mulhearn, Jr.
Bailey M. Geeslin L. F. Newens
Patrick A. Hanley Robert W. Nyswaner
Walter Haug John Vecchiarelli
Robin Holmes

Executive Summary

- This paper develops a simulator, or model, of the interstate carrier common line (CCL) pooling process, specifically representing the recovery of local loop costs. Although the simulator looks at only one piece of the large puzzle of jurisdictional cost allocations and revenue recovery, it may be used to evaluate the basic mechanisms of various proposals for changing the CCL pool. The simulator characterizes and describes relative impacts; it does not attempt to represent reality. The modeling is extremely simplified, reflecting structure and analysis. The simulator looks at a group of companies, the Bell operating companies (BOCs), to clarify relative positions under the various proposals.
- The five pooling methods are: the Ozark Plan, the Bell Atlantic proposal, the end-user charge, the end-user charge combined with a 25% cost allocation, and the French proposal.
- A fundamental assumption behind pooling is that some companies in the pool will benefit at the expense of others. A local exchange carrier (LEC) whose per-minute NTS costs are less than the nationwide average ends up remitting revenues into the NECA pool. This case gives rise to the perception that this low-cost LEC subsidizes LECs whose per-minute NTS costs exceed the nationwide average. Although this is not a direct payment of dollars (cash flows are handled through NECA), the low-cost LEC could charge the interexchange carriers a lower rate if the LEC only had to cover its own NTS costs. The subsidy issue hinges upon this fact. Despite changes between the pre-divestiture pools, many of the old mechanisms developed during the earlier monopoly remained, affecting the post-divestiture picture. The simulator can test whether a revenue pooling arrangement, such as the Ozark Plan or the NECA carrier common line pool, benefits one local company at the expense of another.
- The underlying issues of NTS cost recovery remain, regardless of the revenue recovery method. The positions of some stakeholders may change, their agendas may change, but the treatment of NTS cost recovery is central. The long transitional periods, such as the eight-year shift from SPF% cost allocation to 25% cost allocation, point out the difficulty companies may have in forming coalitions. With each year, the relative positions of the LECs shift. These may cause policy shifts in both the local and interexchange carriers.
- This paper demonstrates the difficulty any one stakeholder has in garnering widespread support for moving from the status quo. Any proposal that disproportionately advantages one group of companies over another is naturally subject to attack from the adversely affected companies. For example, the level of the cap in the Bell Atlantic proposal determines the position of the line distinguishing "payers" from "receivers" in the two pools. Acceptance of the Bell Atlantic proposal, or some other form of a cap, indicates a need to be sensitive to those states who would switch from receiving to paying, regardless of the reduction in the size of the pool.

:
•
•
<u>.</u>

TABLE OF CONTENTS

		Page
	Executive Summary	i
I.	Introduction	1
II.	Distribution of Pooled Revenues	2
III.	The Simulator: Application of Various Proposals	3
IV.	Caveats Applying to the Simulator and a Rough Check on the Simulator	5
V.	The Pooling Simulator: Local Loop Costs and Interstate Cost Recovery	8
VI.	Summary of Simulated Costs and Revenue Pools	13
VII.	The Pooling Simulator: Ozark Plan Mechanisms	14
vIII.	Simulation of the Bell Atlantic Proposal	17
ıx.	Simulation of \$2 End-User Charge	21
х.	Simulation of \$2 End-User Charge Combined with 25% Cost Allocation	25
XI.	Simulation of French Proposal	30
XII.	Summary	33
XIII.	APPENDIX A	36
	Background Numbers for Loop Costs and Revenue Recovery Methods	36
XIV.	APPENDIX B	39
	Development of Simulator: Ozark Plan Revenue Recovery	39
xv.	APPENDIX C	44
	Application of the Ozark Plan: Numerical Amounts and Ranks	44
XVI.	APPENDIX D	47
	Application of the Simulator: Bell Atlantic Proposal	47

		Page
XVII.	APPENDIX E	49
	Application of the Simulator: \$2 End-User Charge	49
XVIII.	APPENDIX F	51
	Application of the Simulator: \$2 End-User Charge	
	Combined with 25% Cost Allocation	51
XIX.	APPENDIX G	53
	Application of the Simulator: French Proposal	53
XX.	APPENDIX H	55
	Acronyms	55
XXT.	NOTES	56

.

LIST OF FIGURES

Figure		Page
1	Comparison of Model with 1984 NECA Data	8
2	1980 Bell Operating Company Annual Revenue Requirements per Local Loop	9
3	Comparison of Ranks: Cost per Loop and Ozark Plan Revenue Recovery	12
4	Simulated Pool Sizes: 1980 Total Revenue Requirements and Five Revenue Recovery Methods	13
5	Comparison of Ranks: Cost per Loop and Number of Local Loops, Interstate SLU Minutes of Use, Interstate SLU%, and Interstate SPF%	15
6	Comparison of Ranks: Cost per Loop and Bell Atlantic Proposal for Revenue Recovery	18
7	Comparison of Ranks: Ozark Plan Revenue Recovery and Bell Atlantic Proposal for Revenue Recovery	19
8	Comparison of Ranks: Cost per Loop and \$2 End-User Revenue Recovery	23
9	Comparison of Ranks: Ozark Plan Revenue Recovery and \$2 End-User Revenue Recovery	24
10	Comparison of Ranks: Cost per Loop and \$2 End-User Charge Combined with 25% Cost Allocation Revenue Recovery	27
11	Comparison of Ranks: Ozark Plan Revenue Recovery and \$2 End-User Charge Combined with 25% Cost Allocation Revenue Recovery	28
12	Effect of 25% Cost Allocation on \$2 End- User Revenue Recovery	29
13	Comparison of Ranks: Cost per Loop and French Proposal Revenue Recovery	31
14	Comparison of Ranks: Ozark Plan Revenue Recovery and French Proposal Revenue	22

Figure		Page
15	Summary of Application of Simulator in Dollars: BOC Cost per Local Loop and Revenue Recovery Methods	37
16	Summary of Application of Simulator in Ranks: BOC Cost per Local Loop and Revenue Recovery Methods	38
17	The Simulator: Revenue Requirements, Number of Local Loops, and Ozark Plan Cost Allocators	40
18	The Simulator: Derivations of Interstate Revenue Requirements, Average Unit Price, Revenues Collected Based on Unit Price, and Dollars Paid or Received in Revenue Sharing	43
19	Number of Local Loops, Costs, Ozark Plan Variables, and Ozark Plan Revenue Recovery	45
20	BOC Ranks Associated with Number of Local Loops, Costs, Ozark Plan Variables, and Ozark Plan Revenue Recovery	46
21	Bell Atlantic Proposal: Application of the Simulator	48
22	\$2 End-User Charge: Application of the Simulator	50
23	\$2 End-User Charge Combined with 25% Cost Allocation: Application of the Simulator	52
24	French Proposal: Application of the Simulator	54

I. Introduction

This paper develops a simulator, or model, of the interstate carrier common line (CCL) pooling process, specifically representing the recovery of local loop costs. The simulator looks at only one piece of the large puzzle of jurisdictional cost allocations and revenue recovery. This paper assumes knowledge of the separations and settlements process, access charges, and other traditional industry terms.*

The simulator may be used to evaluate the basic mechanisms of various proposals for changing the CCL pool. The simulator characterizes and describes relative impacts; it is not an attempt to represent reality. The modeling is extremely simplified, reflecting structure and analysis. The simulator looks at a group of companies, the Bell operating companies (BOCs), to clarify relative positions under the various proposals. A more comprehensive picture would include the independent companies, which represent approximately 20% of the CCL pool. The use of 1980 data reflects the lack of more timely, available public data that is detailed enough to present numbers as well as structure.

The purpose of the simulator is to present the situation and to raise issues, but to leave the interpretation up to those who have a stake in the pooling issues. Indeed, even before examining any of the pooling proposals, we could ask whether there should be pooling in the first place. A fundamental assumption behind pooling is that some companies in the pool will benefit at the expense of others. The next question is: Who should benefit?

While the paper presents simplified structures, any reader may modify the simulator with current data and with greater attention to detail. A computer disk containing the formulas for the simulator and the various simulations is available.**

^{*}For definitions and explanations of basic terms and processes, see Carol Weinhaus and Anthony G. Oettinger, Behind the Telephone Debates, Volumes 1 through 3, Program on Information Resources Policy, Cambridge, MA; see also Mark L. Lemler, The FCC Access Charge Plan: The Debates Continue, Program on Information Resources Policy, Cambridge, MA, draft, February 1987.

^{**}The simulator is on an IBM-compatible PC 5 1/4" disk, in Lotus 1-2-3 files (version 2.3). For information, contact the Program on Information Resources Policy, 200 Aiken, Harvard University, Cambridge, MA, 02138, 617-495-4114.

The next section of this paper sets the stage, describing the distribution of pooled revenues. Section III briefly describes the proposals applied by the simulator, followed by caveats in Section IV. These caveats emphasize that the simulator shows structure, not actual data. The later sections develop the simulator itself, explaining the effect of embedded Ozark Plan mechanisms and applying various proposals to the simulator. The summary outlines the Unity 1-A proposal and shows how the simulator may be used as a tool to examine the pooling mechanisms and to flag pertinent questions.

II. Distribution of Pooled Revenues

Before the introduction of long distance competition, there was nationwide averaging of interstate costs and there were uniform nationwide interstate toll rates. All the interstate costs, including the local loop costs, were pooled. The local and long distance companies shared their collected revenues, distributing this revenue by two processes: Settlements distributed revenues between pre-divestiture Bell operating companies (BOCs) and the independents; division of revenues distributed revenues among the BOCs and AT&T Long Lines.

In the traditional industry, AT&T, the independents, and their regulators achieved a compromise for sharing revenues. The Ozark Plan accommodated differences among companies and among states. While this compromise worked for the traditional industry, the breakup of AT&T and the introduction of interstate competition upset the balance. Only the local operating companies remained in the mandatory non-traffic sensitive (NTS) revenue pools, leading to exposure of fundamental differences among companies and among regions — differences that had led to the Ozark Plan in the first place.

Post-divestiture, the National Exchange Carriers Association (NECA) took over the administration of the revenue pool from AT&T. This pool, which determines the nationwide average CCL rate, consisted of total* interstate NTS costs for all the local exchange carriers (LECs, or local operating companies). NECA administers settlements among the LECs, who bill the interexchange carriers for the CCL. The settlement is based on the net of the LECs' collections and their own interstate NTS costs,** using the same mechanisms that AT&T used to settle with

^{*}Less the cost of the line-side connection at the end office (separations Category 6), the amount recovered from end-user charges, and the amount recovered from special access surcharges.

^{**}The same considerations apply to these costs as to the total costs mentioned above.

the independents before divestiture. A LEC whose per-minute NTS costs are less than the nationwide average ends up remitting revenues into the pool. This case gives rise to the perception that this low-cost LEC subsidizes LECs whose per-minute NTS costs exceed the nationwide average. Although this is not a direct payment of dollars (cash flows are handled through NECA), the low-cost LEC could charge the interexchange carriers a lower rate if the LEC only had to cover its own NTS costs. The subsidy issue hinges upon this fact. Despite changes between the pre-divestiture and post-divestiture pools, many of the old mechanisms developed during the earlier monopoly remained, affecting the post-divestiture picture.*

III. The Simulator: Application of Various Proposals

The simulator begins with the relative positions of the LECs or local operating companies going into the revenue pool which, in turn, determines the nationwide rates. Relative to one another, some LECs have low costs and some LECs have high costs. In the revenue distribution process, low-cost companies pay into the pool and high-cost companies receive payments from the pool, giving rise to the perception that low-cost companies subsidize high-cost companies.

Our discussion covers several methods of cost recovery applied to the simulator. With each of these methods, the simulator reflects the mechanics of the pools; it does not specify which companies would change in real-life application of proposed changes. Furthermore, the simulation depicts only the end results. In reality different proposals involved different transition mechanisms. The five methods are:

^{*}In the mid-1980s, the CCL pool was reduced by the extent to which company-owned local plant was reduced. Customers in 1986 owned their customer premises equipment (CPE), the interstate costs of which are being phased off the local operating companies' books over a period of five years (1982 through 1987), with customers in 1986 owning some inside wiring. In the post-divestiture pool, there are two components -- end user and CCL. The end-user component is recovered on a direct basis; local operating companies keep their own end-user component. As the size of the end-user component grows, the CCL component shrinks.

1. Ozark Plan²

On the eve of the AT&T divestiture, the division of revenues process divides the interstate revenue pool among the BOCs and AT&T Long Lines. A similar process called settlements divides the interstate revenue pool among the BOCs and the independent telephone companies. After divestiture the formula used to determine NTS costs (the SPF formula, or subscriber plant factor) determines the size of the interstate NTS pool.* The principles of the division of revenues process and settlements process are applied to this NTS pool as a basis for distributing NTS revenues among the LECs.

2. Bell Atlantic Proposal 3

A "cap" limits the pool size and the participants. This proposal seeks to limit the CCL rate charged the interexchange carriers, thereby allowing low-cost companies to combat bypass in their operating territories. Recognizing that a reduction in the CCL pool is detrimental to high-cost companies, the proposal includes a transition. Each company recovers its own CCL revenue requirements up to a "cap". Companies whose NTS costs exceed this cap participate in a NECA-administered pool whereby a "surcharge" element charged to the interexchange carriers recovers costs of those companies who exceed the cap. The amount of money involved in this "surcharge" pool is substantially less than the amount involved in the 1986 NECA pool. The level of the cap determines the position of the line distinguishing "payers" from "receivers".

3. \$2 End-User Charge

This end-user charge reduces the pool through a monthly flat rate paid by the end user, a simplification of the interstate end-user charges levied by the FCC (Federal Communications Commission). By 1986 there was recovery of a portion of the local loop from the end user — residential, single-line business, multi-line business, and Centrex customers. The simplified form assumes a flat rate of \$2 per loop, ignoring the higher recovery per loop allowed for multi-line business and Centrex customers. As the end-user charge component of the NECA pool increases, the CCL component decreases. The Rochester proposal is another variation of an end-user charge.

^{*}For definitions of NTS (non-traffic sensitive), TS (traffic sensitive), SPF (subscriber plant factor), SLU (subscriber line use), and CSR (composite station rate) ratio, see Behind the Telephone Debates, Volume 3.

4. \$2 End-User Charge combined with a 25% Interstate Cost Allocation⁵

This shows the additional effect of changing from SPF% to 25%. It includes the transition of cost allocation from SPF% to 25%, but excludes the Universal Service Fund (USF) — a fund used to help high-cost companies recover their costs, also referred to as the High-Cost Fund.

5. French Proposal⁶

The French proposal reduces the pool because the end user pays the difference between SPF% and SLU%. In this proposal, the NECA pool consists of interstate NTS costs based on interstate SLU% (subscriber line use). The remainder of the NTS costs (SPF% minus SLU%) are recovered directly from the end user. The pool size is reduced by the amount of this direct payment.

IV. Caveats Applying to the Simulator and a Rough Check on the Simulator

The following caveats apply to this simplified simulator. Several of these points indicate that the simulations limit the size of the revenue pool while in reality, in early 1987 the NECA pool consists of a large amount:

- 1. This simulator uses 1980 data from the FCC. As shown later in this section, 1984 data provide a rough check on this simulator's evaluation of which companies pay net revenues and which companies receive net revenues from the interstate pool.
- 2. Only data for the BOCs appear in this simulator. With equivalent data for the larger independents, it is possible to expand the simulator. However, for simplicity, the discussion excludes independents' data because our purpose is to show basic mechanisms. This exclusion of the independents simplifies certain relationships, thus not reflecting reality.

Because the simulator includes only 1980 BOCs, it omits Alaska and Hawaii, neither of which contains a BOC.

Also note that in 1980 four states were served by more than one BOC: Idaho, Kentucky, Ohio, and Texas. Therefore, each of these states has two BOC listings.

3. The simulator only shows end results of various proposals, ignoring transition mechanisms. A more accurate picture

would include these transitions over time and their effects.

- 4. Some graphics depict only relative change, neither a correct alignment of ranks in the "before" nor "after" columns. Shifts in rank indicate structure, not real-life positions. In these figures shaded columns rank BOCs by local loop costs or by revenue recovery (e.g., Figure 3).
- 5. The simulator covers only interstate local loop costs and interstate revenue sharing. Generally, within each state, uniform state toll rates (which imply averaging across companies) encouraged similar processes for state toll revenue sharing among the BOCs and the various independents. Therefore, some questions arising out of nationwide practices also apply to statewide practices.
- 6. The simulator is limited to local loop cost data. In this example the term "local loop" includes all subscriber lines, drops, and blocks. The simulator excludes inside wiring, customer premises equipment (CPE), and central office equipment, all of which are other components of NTS plant. The exclusion of these categories brings the simulator closer to the post-divestiture competitive picture which encompassed (a) the removal of CPE from the rate base, (b) a transition period for the removal of inside wiring from the rate base, and (c) the recovery of NTS central office equipment via traffic-sensitive (TS) access rate elements. The simulator excludes all TS costs. The simulator also ignores direct assignment of WATS (Wide Area Telecommunications Services) lines and special access surcharges.
- 7. In reality the 1980 demand is measured by conversation minutes. However, the simulator uses interstate SLU (subscriber line use) minutes of use as demand to determine revenues, where:

price x demand = revenues.

With the introduction of access charges, demand would be measured in access minutes instead of in the simulator's SLU minutes.

3. The simulator uses a single nationwide average interstate toll rate. In reality, state and interstate rate schedules produce numerous prices. These schedules contain variables, such as distance called or direct dial versus operator assistance. The use of actual average rates per state instead of a single nationwide rate in the simulator might change the relationships of the states in terms of cost recovery. However, our check of the simulator to 1984 NECA data at the end of this section found the simulator to be a reasonable approximation.

- 9. In addition, the simulator is set so that prices exactly cover costs. The costs included the authorized rate of return (ROR). This means that the rate of return (ROR) was already set before the simulator developed the nationwide price, setting prices equal to costs. In reality, prices are designed to recover revenues above costs.
- 10. The simulator does not distinguish between premium and non-premium access minutes in setting the CCL charge. In other words, the simulator ignores the other common carrier discount.
- 11. Data were unavailable to break out the local loops by residential and single line business, by multi-line business, and by Centrex. Therefore, the use of a monthly \$2 end-user charge per line is an extremely rough approximation. In reality, multi-line business customers have monthly end user charges of up to \$6 per loop. Centrex charges have risen to \$3 per month.
- 12. In the simulation of the Bell Atlantic proposal using 1980 data, a "cap" was set using the simulator's average unit price. In reality, Bell Atlantic's proposal sets the "cap" at a rate designed to maximize the number of companies covering their own costs. This "cap" would change each year during a transition in which each company's interstate cost assignment transitions from a SPF% to a 25% cost allocation.

Some 1984 numbers released, by NECA provide a rough check on the accuracy of the simulator. Figure 1 compares the net dollars paid (indicated by parentheses) or received (indicated by no parentheses) from the interstate pool. The data for the model are from Appendix B, Figure 18, Column M.

With the increase in the cost allocation per state between 1980 and 1984, the NECA values should be larger. What is important in the comparison is whether a BOC pays or receives from the pool and the position of a BOC in relation to the others. With the exception of New York, the simulator checks out with the NECA data. Remember that the simulator is theoretical: It omits independent data which, if included, would change the unit price, which in turn would alter who "pays" and who "receives" money from the pool, altering the amount of money involved in this process. In the simulator, New York lies at the border between payer and receiver, receiving \$2.54 per local loop. This BOC also has 7.9 million local loops, the second highest number of local loops. Multiplied by the number of local loops, even a small amount paid or received by New York produces an extremely large number. A slight shift upward in the average unit price would bring New York below the border, turning this BOC into a payer.

	Net Interstate Pool Dollars: Paid (-) or Received (+)				
State BOC	1980 FCC Data (Simulator)	1984 NECA Data			
FL CA AZ AK NH MA NY* PA	\$84.7 million \$85.6 \$24.3 \$ 0.6 (\$32.5) \$20.1 (\$61.6) (\$63.6)	\$148.4 million \$102.2 \$ 37.3 \$ 37.3 \$ 1.5 (\$ 57.8) (\$ 58.0) (\$ 67.4) (\$110.9)			

^{*}In the model the New York BOC receives from the interstate pool; in reality this BOC pays into the pool.

Figure 1
Comparison of Model with 1984 NECA Data

V. The Pooling Simulator: Local Loop Costs and Interstate Cost Recovery

To analyze how a particular revenue-sharing method works, we need to look at the cost issues that these processes are meant to resolve. Do some companies have local loop costs significantly higher than those of other companies? If they do, should the high-cost companies be subsidized by low-cost companies? And if they are to be subsidized, by what method?

Figure 2 ranks the state BOCs by 1980 total local loop costs (state and interstate). The intensity of the shading indicates rank, with the darkest shading indicating the highest loop cost for the Wyoming BOC and the lightest shading indicating the lowest loop cost for the District of Columbia BOC. To simplify the text, the discussion refers to the various BOCs by their state name, ignoring that states may contain independent companies as well. Using a shaded column makes it possible to depict the repositioning of the companies, emphasizing the relative positions instead of the magnitude of the shift. In the simulator, the total of these BOC loop costs is \$12.07 billion (indicated at the top of Figure 2). In Section VI, Figure 4 gives the dollar amounts associated with the total local loop costs of Figure 2 as well as the dollar amounts developed by the simulator for the various revenue recovery methods.

^{©1987} Program on Information Resources Policy, Harvard University.

Total :	Cost: \$12.07		J
State	W36 \$12,07	Billion	
BOCs		Rank	I
WY		1	1
MS		2	I
FL.		3	I
NV		4	I
AR		5	ı
LA SC		6 7	ı
wv		8	ı
KY1		9	ı
AL		10	ı
ID1		11	ı
ND		12	ı
VT		13 14	ı
SO GA		15	
7X1	35.50	16	
NM	4-4-4	17	ı
AZ		18	ı
ID2		19	
NC		20	
TN		21	i
NH CO		22 23	İ
OA.		24	I
KS		25	I
MT		25	I
ОК		27	I
ME		28	I
VA		29	I
ME KY2		30 31	I
CA		32	ļ
MN		33	ŀ
M		34	1
WA		35	
IA		36	l
ИÝ		37	l
DE		38	١
MKO UT		39 40	١
		41	ľ
OH1		42	-
MD		43	
NJ		44	
₩I		45	١
CT TY		46	١
TX2 OH2		47 48	١
IL		49	
MA		50	-
AL		51	
PA		52	
DC .		53	
01-Pacific	NW IOH	1-Cirun Be	
		n Ohio Es	H
02-Mtn Bei 1Y1-Cinn 8		2-Ohio Be I-SW Bell	

Figure 2

1980 Bell Operating Company Annual Revenue Requirements per Local Loop The simulator can test whether a revenue pooling arrangement, such as the Ozark Plan or the NECA carrier common line pool, benefits one local company at the expense of another. For example, if the choice is made to subsidize geographically all NTS costs through a pooling arrangement (a condition that is questionable given the Universal Service Fund or USF),* one would expect Wyoming to receive the greatest subsidy relative to its costs and the District of Columbia to make the greatest relative contribution.

In reality each company receives a payment from the revenue pool. However, our simulator looks at the net position of a company comparing its costs and its collected revenues. "Receiver" refers to companies who collect revenues below their own costs, thereby receiving net "payments" from the pool. Conversely, "payer" or "contributor" refers to companies who collect revenues above their own costs, and therefore contribute additional revenues to the pool in support of the high-cost companies.

If companies were ranked from the highest net payment (a "receiver") to the lowest net payment (a "contributor"), a shaded column showing the state ranks for interstate revenue recovery would be identical to the column in Figure 2. The company with the highest costs would "receive" more dollars per loop, with the dollars per loop decreasing as you move down the column until the company at the bottom would "contribute" the largest amount of dollars per loop.

In Figure 3, the left-hand side shows the local loop costs (taken from Figure 2), while the right-hand side shows the simulation of the Ozark Plan's cost recovery mechanism. Note that the cost recovery covers only interstate NTS costs, which included the portion of the NTS revenue requirement allocated to the interstate jurisdiction and recovered from interstate rates. Each company recovers the remainder of its own NTS costs from state revenues. In the simulator, this interstate pool is \$3.06 billion. Figure 3 presents the picture at the time of divestiture scaled down to 1980 levels; it therefore excludes end-user access charges.

Because each company in Figure 3 retains its shading in the transition from left to right, disparities jump out. A shift of more than three positions indicates a significant change. The dashed line between ranks 31 and 32 differentiates between "payers" into the simulator pool and "receivers" from the pool.

^{*}The USF targets additional help for high-cost companies.

In Figures 2 and 3, and in similar figures in this paper, the graphics depict only relative change, not whether the local loop cost ranks or the revenue recovery ranks are the "correct" alignments. The shifts show structure and not real-life positions.

The overall pattern in the shadings in Figure 3 suggests that in general low-cost companies contribute to the support of high-cost companies. Wyoming continues to rank first and Washington, D.C. continues to rank last. But some shifts stand out. For example, California shifts from 32nd in terms of loop costs to 15th in terms of revenue recovery. This suggests that California is receiving more than its due. Similarly, West Virginia is adversely affected relative to other states. Even though West Virgina is a receiver, it receives significantly less (ranked 31st) than its loop costs suggest (ranked 8th). Therefore, the simulator indicates that some companies benefit more than others by the Ozark Plan. A company's position on a particular proposal changing the revenue recovery method depends on whether it benefits or loses in terms of its current status. Thus the Ozark Plan serves as a starting point for comparing various proposals.

The simulator is a simplified, closed system, whose limited scope avoids some of the complexities of the mid-1980s. It shows the shift in relative positions among LECs in the change from local loop costs to the interstate recovery of a portion of these costs.

While the simulator shows the structural effects of the Ozark Plan, it does not reflect specific results, either in the numbers or in their derivation. The numbers derived illustrate generic relationships. The original data used in the simulator are from the Federal Communications Commission (FCC). For example, Figure 3 shows New York as receiving money from the interstate revenue pool. In truth, New York paid out money in the 1980 settlements process. This anomaly derives from the simulator's using the sum of only BOC costs and ignoring independents' costs. Had the simulator included interstate independent settlements, the average unit price would have changed and New York Telephone's position would have shifted from that of a receiver to that of a donor.

1980 Annual Average Revenue Requirement per Local Loop			1980 Annual Average Net IS Recovery per Local Loop		1967 Program on Information Resources Policy, Hervard University
T	Total Cost		Pool Siz	8 :	1
	2.07 Billion		\$3.06 8#		Įį
State BOCs		Rank		State 900s	1
WY		1		WY	18
MS	-	2		W	1
FL		3		FL.	1
NV		4		SD	*
AR		5		AŽ	3
LA		6		101	Į
SC		7		VT	5
WV				MΤ	-
KY1		9	4000	ND	
AL		10		MS	ļ
ID1		11		AR	
ND		†2		102	
VΤ		13		OR	1
S D		14	XOLOGO CO	NM	1
GA		15		CA	;
TX1		16		00	
NM		17		LA .	:
AZ		18	(140 pr.) 20000000000	TX1	6
105		19		OK	
NC .		20		WA	1
TN		21	***********	NE	
00		22	5555555555	AL	
NH OD		23		NY	
OR KS		24 25	***************************************	IA KY1	
MT		26	*****	MIN	
OK .		27	833333333	SC	
ME		28	*	ME	ŀ
VA		29		NH	
NE		30		KS	
KY2		31		wv	1
CA		32		- MI	†=
MN		33		NC	
M		34		GA	
WA		35		VA	
IA		36		UΤ	
NY		37		TN	
DE		38		KY2	
MO		39	*******	MO	
υτ		40		OH1	
IN		41		WI	
OH1		42		IL,	
MD		43		IN	
NJ		44		0E	5
WI		45		MA	
CT		46		MD	
TX2		47		OH2	
OH2	100000000000000000000000000000000000000	48		PA	
L		49		CT	
MA		50		TX2	
Al		51		NJ C	
PA		52		RI	
DC		53		DC	
1-Pacific	NW KY2	-South	Central TX	-SW Bet	
		l-Cinn 8		2-Mtn Bell	

Figure 3

Comparison of Ranks: Cost per Loop and Ozark Plan Revenue Recovery

VI. Summary of Simulated Costs and Revenue Pools

Figure 4 shows the simulated total costs and the revenue pool sizes for each of the five revenue recovery methods explored in this paper. These revenues pools are from the carrier common line charge levied by the BOCs on the interexchange carriers. The simulated revenue pools reflect assumptions made to develop the simulator and not reality. For example, application of actual per-loop end-user charges would exceed the \$2 monthly flat rate. In a similar manner, the "cap" in the Bell Atlantic simulation shows how the structure of the proposal works but does not produce the actual NECA pool resulting from this proposal.

1980 Total Revenue Requirements	Simulated Total Cost: \$12.07 Billion
Revenue Recovery Pools	Simulated Pool Size:
1980 Ozark Plan	\$ 3.06 Billion
Bell Atlantic Proposal	0.37
\$2 End User Charge	1.11
\$2 End User Charge Combined with 25% Interstate Cost Allocation	1.07
French Proposal	0.91

©1987 Program on Information Resources Policy, Harvard University.

Figure 4

Simulated Pool Sizes: 1980 Total Revenue Requirements and Five Revenue Recovery Methods

VII. The Pooling Simulator: Ozark Plan Mechanisms

In the simulation of the Ozark Plan in Figure 3, four variables determined the shift in rank on the revenue recovery side: number of local loops, amount of interstate SLU minutes of use, SLU%, and SPF%.* No single variable accounts for a company's final rank in the revenue recovery column. The variables must be considered in tandem. Figure 5 compares the ranks of cost per loop [Column 1] with each of these four variables [Columns 2 through 5]. Appendix C contains the numerical background for the following discussion of these four variables.

1. Number of Local Loops:

Aids comparisons between states by scaling costs and revenue recovery on a per-loop basis. For example, while New Jersey pays an amount into the pool almost nine times that of Rhode Island, the payments per loop into the pool are nearly the same.** Figure 5 compares the ranks of cost per loop [Column 1] with the ranks for the number of local loops [Column 2].

2. Interstate SLU Minutes of Use:

Provides a measure of a company's participation in interstate commerce, because the simulator uses the amount of interstate SLU minutes of use as a measure of demand (price x demand = revenues). Figure 5 compares the cost per loop [Column 1] with the ranks for the interstate SLU minutes of use [Column 3].

While the simulator uses just one nationwide price, in reality the state and interstate rate schedules produce numerous prices.

^{*}Behind the Telephone Debates, Volume 3, provides details on the Ozark Plan for separations which includes the SPF (subscriber plant factor) formula and two of its components: SLU (subscriber line use) and CSR (composite station rate) ratio.

^{**}See Appendix B, Figure 17, Column A, for local loop revenue requirements. See Appendix B, Figure 18, Column J, for interstate local loop revenue requirements. See Appendix C, Figure 19, Column 1, for revenue requirements per loop.

1980 Annuai Revenue Rei per Local	fnemeriup		Number al Loops	1980 inters SLU Minutes		1980 SLU	J9%,	1980 SPF	**
Total C \$12.07 B	ost:	Total N	lumber: n Loops	Total IS U	se:	Average St 7.7%	.U%;	Average SP 25.3%	
State BOCs	Ra	ınk	State BOCs		State BOCs		State BOCs	-	State BOCs
wy	177	800000	CA CA	· · · · · · · · · · · · · · · · · · ·	NY		NV NV		NV
MIS	2	M00000	NY		CA		wy		WY
FL.	3	******	TX1		NJ	(222.2015)	VT	p; 12 (0.00pg)	AZ
NV	4		88 IL		IL		NH		VT
AR.	5		∰ PA		PA		DE	*********	DC
LA	6		∭ NJ	1005300000	TX1		DC	*************	NH
sc	7	· 📖	₩ W		FL	l	NJ		¢0
wv	8	' ‱	∰ он₁		MA		AZ	000000000	MT
KY1	9		PL		GA		ID1		ID†
AL E	10	o (100000	₩ MA		OH1	l	ਰ]		NE
ID1	1	0.00000	⊗ MO ∶		MI	l 📟	NE I		ED\$
ND	11	177070	GA		CT		мт		DE
VΤ	1.	999999	VA.		MD		∞		PL.
SC		20000000	₩ MO		VA		SO		SD
GA .	1:	174111	LA	obcookol cx	80		1D2	7000000000	NM
TX1	11	2000000	™ ∷ ct		MO TN		Ri		CT
AZ	10	800000	WA WA	***********	AZ		NM		TX2
02	1	XXXXXX	MN MN	CONTRACTOR OF STREET	LA	***************************************	TX2		NU:
NC 188	2	999999	89 ‴` ⊗ wi	500000000	IN		FL		PO
TN DE	2	023272	∭ in	l	WA		ND NO	300000000000000000000000000000000000000	OK
 ∞	2	0000000	80 CO		MIN	***************************************	OK OR	197697537520	MD UT
NH BE	2:	7993399	NC NC		ОК	**********	NY		WA
OR 🚒	2-	7555000	AL		NC	*******	MA	**********	GA
ks 🎆	2!		AZ	********	w	l	iA.	200000000	NY
vī	21	s 20000000	ОК		AL		KS		AI
ок 🧱	2	7	OR	*********	DC		AR	200000000	KS
w∈ 🎇	2	• 🚃	⊗ IA	1988	KS.	***********	ME	********	IA.
va 🧱	24	• 🗱	KS		OFI	l 📟 🐃	мо		MO
v∈ 👯	34	0	KY1		MS		GA .		MA
KY2	31	1	SC.		sc		n.		AR
CA 🎇	****** 34	2	MS		I A	*************************************	VA		ME
v≈\ 🞇	34 A	, (((()	∭ oc ∣		KY1		WA		IL
u) 🎇	₩₩ 34		wv		NH		υτ		VA
MA 🎆	₩₩ 35		AR ON		wv		MS		WN
<u>^</u>	₩	(0000000	∰ OH2	*******	AR		MIN		CA
<u>~</u> ∭	37	10000000	₩	**********	UΤ	***********	PA		MS
*	32 32	0000000	₩ FI	000000000	NM O	500000000	wv	656565656	NC
wo 	₩ 3°		NM NE		RI NC		MD		IN .
л N ∰	***		ME ME		NE	*********	IN	***********	MD TX1
™ (886 OH1 (886		3000000	MH MH		OH2 DE		NC KY1	***********	PA
AD 🛞	***************************************	2999999	X DE		ME	0202000000 000000000000000000000000000	TN	49,420,202223	· w
ŭ ∭		V.V.	102	22000000000	WY		sc	30000000	TN
wi 🎇	**************************************	130,000	мт		(D2		AL		AL
л Ж	1000000 40		SO	**********	MT	*********	wi		KY1
TX2	4		ND		ντ		OH1		SC
энг 🔯	**************************************		WY	**1.50.50	NV		CA	200000000	WI
r [833	49 1000000000000000000000000000000000000		, vr	*********	TX2		TX1		u
w 🧱	50	VARABAR	TX2	(expositional)	SO	***************************************	OH2		OHZ
a 🎇	하여다 2000년 5 1		NV		NO.	11000000	м		OH1
"A	52	2	KY2	******	KY2	*******	MP		MI
oc 🏻	51		ID1		101	 	KY2		KY2

ID1-Pacific NW ID2-Mtn Bell KY1-Cinn Bell KY2-South Central OH1-Chio Bell OH2-Chio Bell TX1-SW Bell TX2-Mtn Bell

Figure 5

Comparison of Ranks: Cost per Loop and Number of Local Loops, Interstate SLU Minutes of Use, Interstate SLU%, and Interstate SPF% Seen in tandem, the above two variables give the interstate demand per local loop. For example, New Jersey has 1956 interstate SLU minutes of use per loop compared to Wisconsin, which had 1076 interstate SLU minutes of use per loop. All other elements being equal, the fact that New Jersey has a higher demand will make it contribute more into the pool than Wisconsin. With this higher demand New Jersey has a higher probability of covering its own costs and therefore becoming a contributor. (If a company pulls in revenues above its costs, it's more likely to pay into the pool.) This relationship counteracts New Jersey's advantage gained from a higher SPF% (ranked 18th) compared to Wisconsin's SPF% (ranked 46th).

3. SLU%

Shows the relative importance of interstate subscriber line use compared to total (interstate toll, state toll, and exchange) subscriber line use. The higher the SLU%, the larger the interstate cost allocation. Two states with different amounts of interstate use may have similar SLU% values. California and Louisiana have roughly the same SLU% values (5.7% and 5.6%), yet California has nearly five times the amount of interstate traffic over its loops because California has five times the number of loops.

Based on SLU% alone, Rhode Island with its 9.4% SLU would receive a relatively larger cost allocation than West Virginia with its SLU of 6.9%. Figure 5 compares the cost per loop [Column 1] with the ranks for the interstate SLU% [Column 4].

4. SPF%

Shows the effect of the SPF multiplier which includes the effect of the CSR ratio on SLU%. SPF% multiplies the value of SLU% for all companies, but multiplies some companies by a greater amount than others. For example, California rises 12 places from 48th for SLU% to 36th for SPF%. Conversely, Rhode Island drops 10 places from 16th for SLU% to 26th for SPF%. Figure 5 compares the cost per loop [Column 1] with the ranks for the interstate SPF% [Column 5].

VIII. Simulation of the Bell Atlantic Proposal

The simulator may be used to compare the relative impacts of proposed modifications to the NECA common line pool. In the simulator, the 1980 loop costs and revenue recovery serve as the foundation for comparison with each of the various proposals.

On October 28, 1985, Bell Atlantic filed a petition with the FCC to limit the mandatory pool. Bell Atlantic claimed that its large payment in the revenue sharing process (\$135 million for New Jersey Bell alone) hampered the company's ability to combat bypass. The proposal sought to limit the CCL rate the Bell Atlantic companies charged the interexchange carriers. Essentially each company would recover only its own MTS costs. However, Bell Atlantic recognized that its proposal would be detrimental to high-cost companies, which received payments in the revenue-sharing process. Therefore, the proposal provides a transition in which a "cap" is set for recovering NTS costs through the CCL rates. Those company costs in excess of this cap define a NECA-administered pool for revenue sharing. In turn, this "excess cost" pool determines a "surcharge" element to be charged by all LECs to the interexchange carriers.

Revent	nnual Average le Requiremen Local Loop	*	Beil Atlantic P Annual Averag Recovery per L	e Net IS	
Ť	otal Cost 2.07 Billion	1	Pool Siz	Pool Size: \$0.37 Billion	
State		Ran	4	State BOGs	
WY		1		WY	1
MS		2		NV	1
۴L		3		FL	l
NV		4		50	l
AR		5		AZ	l
u				ID1	
sc		7		ND	
wv		8	000000000	MT	١.
KY1		9		MS	1
AL		10	V V	VΤ	1
ID1		11		AR	
ND		12		102	1
VT		13		CA	
SD		14		OR	
GA	The second	15		NM	ŀ
TX1		16	Species and	TX1	
NM		17		LA.	ļ
AZ		18		co	1
ID2		19		WA	
NC		20		_ox	- ŀ
TN		21		AL	
co		22		IA.	
NH		23		NY	
OR	***********	24		MN	
KS		25		NE	
WT		26		KY1	
QK ME		27 28	1000000000	SC ME	
VA		25		KY2	ĺ
NE		30	***************************************	Mi	
KY2		31		KS	
CA		32	*******	WI	ľ
MN		33		OH2	
MI		34		OH1	
WA		35		PA	
IA		36		IL	٥
NY		37		IN	7
DE.		38		NC	ĺ
MO		39	******	MD	
ŲΤ		40		TN	ō
IN		41		wv	987 1
OHt		42		MA	a a
MD		43		ч	9
NJ		44		MQ	1
WI		45		VA	1
CT		46		RI	3
TX2		47		NH	1
OH2		48	**********	GA	*
ĦĻ		49		TX2	3
MA		50		СТ	Y.
Ri		51		NJ	ă
PA		52	27777777	DC	987 Program on Information Resources Policy, Harvard University
DC		53		ĐE	*
1-Pacific	NW KY2-	South	Central TX1	-SW Bell	
,					

Figure 6

Comparison of Ranks: Cost per Loop and Bell Atlantic Proposal for Revenue Recovery

	Net	innual Averag IS Recovery Local Loop		Bell Atlantic P Annual Averag ecovery per Li	e Net IS	
	Ι,	Pool Size: 3.06 Billion		Pool Size \$0.37 Billi		
	State BOCs		Rank		State BOCs	1
						ł
	WY		1		WY	
	NV.		2		W	
	FL		3		A.	
	S0		4	1.5	SO	
	AZ		5		AZ	
	101	5. 5	6		101	
	VT		7		NO	
	MT	1.00	8	· · · · · ·	MT	33
	NO		9		MS	Receives
	MS		10		VT	₹
	AR		11		AR	0
	(02		12		ID2	"
	OR		13		CA	
2	NM		14		OR	
Receives	CA		15		NM#	
Ş	00		16		TX1	
æ	LA.		17		LA	
	TX1		18		CO	
	ОК	0,000,000	19		WA	
	WA		20_	9000000000	_ <u>-∝</u>	
	NE.		21		AL.	1
	AL		22		IA LDC	
	NY		23		NY	
	IA KY1		24		MN	
	i		25	************	WE	
	MN		26		KY1	ļ
	SC ME		27	***************************************	SC ME	[
	NH NH	*********	28		KY2	
	KS		29 30		MI	
	wv	***************************************	31		KS	
	- MI		- 32		wi	
	NC.	***************************************	33	· ************************************	OH2	
	GA		34		OHI	
	VA				PA	
	υT		35 36	*******	₽A Æ	T
	TN					¥θ
	KY2		37 38	5000000000	IN NC	· ·
	MO			***************************************		
	OH1		39 40		MID TN:	g
	WI		41		WV	I 3
	IL.		42		MA	1
\$ ×	, io		43		UT	3
Pays	06		44	*********	MC	ĭ
	MA		45		VA	1
	MO		46		AI	97 Program on Information Flancources Folicy, Henrald Utevensity
	OH2		47		N#H	ž.
	PA		46		GA	2
	CT		49		TX2	3
	TX2		50		CT	Ĩ
	N.J		51		NJ	1
	RI		52		DC	3
	DC		53		0E	1
	iO1-Pacifi		-South (SW Bell	
	iD2-Mtn 8		-Cinn 8		2-Mtn Bell	
	KY1-Cina	oen OHZ	Ohio S	en		

Figure 7

Comparison of Ranks: Ozark Plan Revenue Recovery and Bell Atlantic Proposal for Revenue Recovery

As a result, the money involved in this surcharge pool is substantially less than the amount involved in the 1985 NECA pool. In addition, low-cost companies, such as the Bell Atlantic companies, charge the interexchange carriers a lower rate (the new CCL rate set by the cap plus the surcharge rate) than the 1985 CCL rate.

The Bell Atlantic proposal is far more complex than our simulation. First, the Universal Service Fund (USF) offsets the amount of money paid to the high-cost companies. Second, the Bell Atlantic proposal includes changes in the cap in 1987 and in 1988. A more accurate picture would include the effect of the USF, the transition over time from SPF% to 25% for cost allocation, and the changes in the cap.

Figures 4, 6, and 7 give the results of the simulation of the Bell Atlantic proposal. Appendix D provides the calculations for developing these figures. In Figure 4, the simulated "surcharge" pool of \$0.37 billion is substantially lower than the NECA pool of \$3.06 billion. There is a dramatic reduction because the BOCs directly recover their own interstate NTS revenue requirements that fall below the cap.

As in the earlier figures, Figure 6 compares the 1980 local loop costs (right-hand column) with the Bell Atlantic revenue recovery (left-hand column). Compared with the Ozark Plan revenue recovery [Figure 3], the boundary between payers and receivers shifts upward, with more companies paying in the revenue-sharing process. While the pattern of revenue recovery has not changed to a large degree, it is necessary to compare the two recovery methods to make sense of the shift of the boundary between payers and receivers.

Figure 7 compares the Ozark Plan revenue recovery (left-hand column) with the Bell Atlantic proposal for revenue recovery (right-hand column). The two dashed boundary lines can divide the left-hand column into three groups. The top group consists of Wyoming through Washington (ranks 1 through 20), the middle group consists of Nebraska through West Virginia (ranks 21 through 31), and the bottom group consists of Michigan through the District of Columbia (ranks 32 through 53).

Those companies in the top group remain receivers under the Bell Atlantic proposal, but they receive a significantly lower amount from the surcharge pool. Conversely, those companies in the bottom group remain payers, but pay significantly less under the Bell Atlantic proposal. However, those companies in the middle group suffer the biggest change. Not only do they shift from receiver to payer, but some, West Virginia and New Hampshire, also account for the largest drops in rank. These companies stand out in the otherwise smooth shading of the right-hand column.

The significance of the shift of the middle group from receivers to payers can be explained by their relationship to the cap and the surcharge rate. If the cap is set at a level in which a per-minute "excess" or unrecovered NTS cost is less than the average* per-minute "excess" costs,** then this company "pays" into the new "surcharge" pool. In the simulator, Nebraska through West Virginia changed from receivers to payers [Figure 7]. The simulator reflects the mechanics of the pools; it does not specify which companies would change in real-life application of the Bell Atlantic proposal. The level of the cap determines the position of the line distinguishing "payers" from "receivers" in the two pools. Acceptance of the Bell Atlantic proposal, or some other form of a cap, indicates a need to be sensitive to those states who would switch from receiving to paying, regardless of the reduction in the size of the pool.

IX. Simulation of \$2 End-User Charge

In June 1986, the introduction of a direct monthly \$2 end-user charge per loop reduced the size of the carrier sommon line component of the pool (the NECA-administered pool). The LECs recovered their remaining interstate NTS costs from the interexchange carriers via a reduced CCL rate.

Applying this \$2 end-user charge to the simulator produces a pool of \$1.11 billion [Figure 4] -- a significant reduction from the Ozark Plan pool of \$3.06 billion, but greater than the \$0.37 simulated Bell Atlantic "surcharge" pool. Figure 8 compares the application of the \$2 end-user charge to the cost per loop; Figure 9 compares the \$2 end-user charge to the Ozark Plan revenue recovery. Appendix E provides the calculations for developing the simulation of the \$2 end-user charge.

Although the CCL component of the pool is reduced, the percentage of this reduction will vary for each company and therefore may change the companies' rank order. While most of the states in Figure 8 retain their relative positions in the shift from costs to revenue recovery, some disparities emerge. If the end-user charges were made proportionate to loop costs (high-cost companies collect higher end-user charges than low-cost companies), then the right-hand revenue recovery column shadings and rank orders would be identical to those in the cost column. However, because the end-user charge is a flat per-loop rate subtracted from each company's interstate NTS costs, the relative positions of the companies change. The same four Ozark Plan variables [Figure 5] apply in this case, but the relationships among companies are different.

A glance at Figure 9 indicates the outliers. Delaware, which has a small number of loops, recovers only a small portion of its

^{*}Average of all companies.

^{**}Or surcharge per minute rate.

NTS costs from end-user charges. The greater proportion of its NTS costs come from the revenue-sharing process. Essentially, Delaware gets proportionally more from the pool under this method, as indicated both by its shift in rank from 44th to 22nd and by its shift from a payer to receiver. In contrast, California, which has a large number of loops, receives a higher proportion of its NTS costs from the end user and recovers less in the revenue sharing process. While remaining a receiver, California shifts in rank from 15th to 29th.

1980 Annual Average Revenue Requirement per Local Loop Total Cost: \$12.07 Billion		100	\$2 End User Charge: Annual Average Net IS Recovery per Local Loop Pool Size: \$1.11 Billion	
State BOCs		Ran	k	State BOC4
WY		1		WY
MS		2	# 194	NV
FL				
		3	V-2-1	FL
NV		4		VT
AR		5		AZ
LA		6		IĎ1
SÇ		7		SO
wv		8		MT
KY1		9	303333333	œ
AL	200	10	0000000000	NH
101		11		ID2
ND		12		NO
VΤ		13		MS
SD	ga www.	14		AR
GA		15		NM
TX1		16	*******	NE
NM		17	****	PO
AZ		18		ОК
ID2			***********	
		19		GA
NÇ		20	***************************************	KS
TN		21		LA
∞	300000000	22		DE
NH		23		WA
OR		24		AL
KS		25	iyin ya	SC
MT				wv
		26	5550000000	
QΚ		27	3000000000	ME
ME		28	00.000.000	KY1
VA.		29	****	CA
NE		30		TX1
KY2		. 31		NY
CA		32		IA
MIN		33		VA.
MI		34		MN
WA		35		NC
iA.		35		UT
NY		37		MO
DE		38	*******	TN
MO		39	*******	ÇT
uf		40		
		40		1X2
IN	*************************************	41		W)
OH1		42		M
MD		43	100000000000000000000000000000000000000	IL ;
NJ.		44		IN
WI		45		MA
टा		46		OH2
TX2		47		MO
OHZ	(CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	48		WI
Ļ		49	100-00-00-00-00	RI
WA		50		KY2
AI .		51		DC
PA		52		QH1
ж		53		PA
	<u> </u>		0000000000	
Pacific	WW KY2	South	Central TX	1-SW Bell
Mtn Be			Sell TX:	

Figure 8

Comparison of Ranks:
Cost per Loop and \$2 End-User Revenue Recovery

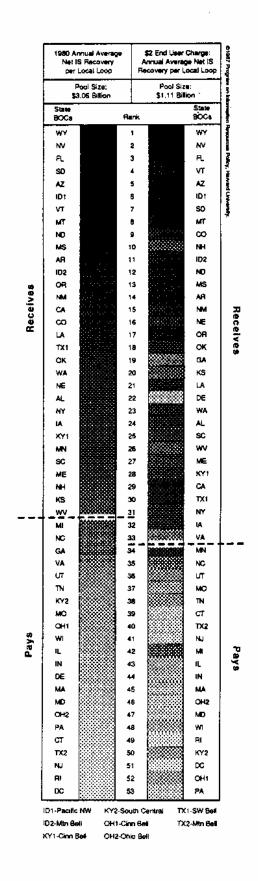


Figure 9

X. <u>Simulation of \$2 End-User Charge</u> Combined with 25% Cost Allocation

End-user charges are not the only factors causing changes in the revenue pool. Separations changes, in the form of the transition from a SPF% cost allocation to a 25% cost allocation have, coupled with the \$2 end-user charge, caused shifts between payers and receivers in the pool.

A look at the 25% cost allocation on its own and not coupled with end-user charges produces a chart with ranks identical to those of average local loop costs in Figure 2. This straight 25% application reflects individual differences in average local loop costs among the BOCs. The simulator also excludes the eight-year transition to 25%, a relatively long time for the relationships among companies to be in flux.

Figures 10, 11, and 12 in this section combine the effects of the \$2 end-user charge with a 25% cost allocation.

The development of the simulator, Appendix B, Figure 17, gives a BOC average interstate SPF of 25.3%. This value is approximately equal to the actual 1980 average SPF of 25.8%. Because the transition is to an average, some companies will benefit, others will lose.

Figure 10 compares the application of the \$2 end-user charge combined with the 25% cost allocation with the rank orderings of cost per loop; Figure 11 compares this combined end-user charge and cost allocation to the Ozark Plan revenue recovery. Appendix F provides the calculations for developing the simulation of the \$2 end-user charge combined with the 25% cost allocation.

Figure 12 compares the \$2 end-user charge at 25% allocation pool with the previously simulated \$2 end-user charge at 1980 SPF% allocation pool [Figures 8 and 9]. The pool size remains relatively unchanged (\$1.07 billion versus \$1.11 billion) because the average SPF% only moved from 25.3% for 1980 to 25% in this simulation. However, individual company SPF transitions resulted in major shifts in company rank order positions. For example, Arizona transitioned from a 42.8% SPF to a 25% cost allocation, dropping 25 positions in rank (from 5th to 30th). On the other hand, Wyoming transitioned from a 50.6% SPF to a 25% cost allocation. Yet, since Wyoming has relatively few loops, most of its interstate NTS cost recovery comes from the pool and not from the \$2 end-user charge per loop. Thus, Wyoming maintains its position at the top of the chart (ranked first).

Some companies benefited from the transition to a 25% cost allocation. South Central Bell in Kentucky (KY2) increased its cost allocation from 12% at 1980 levels up to 25%. In addition to a larger interstate recovery, this company also had a relatively low demand per loop with 858 interstate SLU minutes of

use per loop compared to New Jersey's 1956 minutes. (All other elements being equal, a company collecting less than its own costs will receive money from the pool.) Therefore, Kentucky improved its position in rank 35 positions (from 50th to 15th) -- shifting from a relatively large "payer" to a relatively large "receiver".

The shifts in rank in Figure 12 illustrate the volatility in settlements as transitions in separations and end-user charges take place. While Figure 10 shows a relatively consistent recovery of loop costs at the end of the transition, the road there may be very rocky.

Revenu	1980 ial Average e Requiremen Local Loop	Ni.	An	End User C 25% Alloca mual Averag overy per Li	ition; ja Net IS	1987 Progran
	stal Cost: 2.07 Billion			Pool Siz \$1.07 Bill		Program en Internatio
State BOCs		Re	nk		State BOCs	ļ
WY		1		23	WY	I
MS		2			MS	ž
FL		3			FL	4
API		5			LA AR	ı
EA.		6			SC	Ŧ
SC		7		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	AL	1
wv	· :	8			KY1	
KY1		9		Section 1	wv	
AL ID1	122	10			ND SD	
ND		12			TX1	
VT		13		THE RESERVE	NV	ټ
SD		14	•		ID1	Receives
GA.		15			KY2	Ė
TX1 NM		11			NC TN	ė
AZ		11			GA .	
ID2		15		#####	CA	1
NC		2)		Mi	1
TN		2	ı		QR.	1
co		Z			NBA	1
NH ORI		2			ID2 VT	1
K\$		24		caparadase	KŞ	1
MT		21			ME	1
ØК		27	7		ОК	1
ME		28	3		MŦ	ļ
VA		25			MIN	
NE KY2		30	_	10000000000000000000000000000000000000		<u> </u>
CA		32			WA	
MN		33			IA	
MI		34	ı		NY	
WA		35	5		œ	
IA.		36			OH1	
NY DE		37			NE IN	
MO.		39			MO MO	
UT		40)		NH	
IN		41	ı		υ T	Pa
OH1		4;	2		WI	y g
MD NJ		44	} L		MD OH2	
wı		45	5		DE	
ст		46	ŝ		IL.	1
TX2		47	,		PA	-
OH2		46			ш	1
IL		49			CT	
MA Ri		50 51			NJ TX2	
PA .		52			RI	
DC		53			DC	
11.02	Marchaelerine	0			(4 euro	4
) 1-Pacific	DINNY KYZ∙	· 200	шC	enntrad T⊃	(1.SW 8ell	

Figure 10

Comparison of Ranks: Cost per Loop and \$2 End-User Charge Combined with 25% Cost Allocation Revenue Recovery

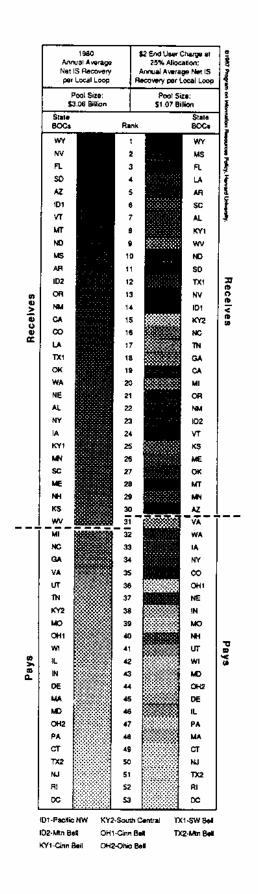


Figure 11

Comparison of Ranks: Ozark Plan Revenue Recovery and \$2 End-User Charge Combined with 25% Cost Allocation Revenue Recovery

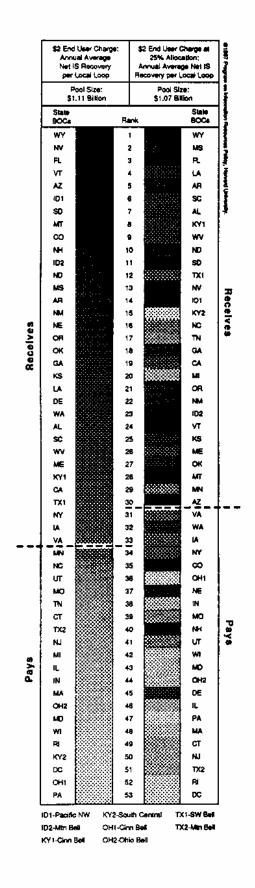


Figure 12

Effect of 25% Cost Allocation on \$2 End-User Revenue Recovery

XI. Simulation of French Proposal

When commenting on the Bell Atlantic proposal, Warren French, president of the Shenandoab Telephone Company, offered yet another NTS pool proposal. In this proposal, the end user picks up the difference between the SPF and SLU cost allocations (SPF% minus SLU%). The NECA pool consists of only interstate NTS cost based on SLU%.

Among the simulations of proposals, the French proposal produces the greatest reduction in the NECA pool. In Figure 4, the simulated French proposal pool is \$0.9 billion, compared to the original pool of \$3.06 billion -- reducing the pool to a third. However, the simulator ignores the fact that since 1980, the interstate SLU% has grown, reducing the difference between SLU% and SPF%. Also, in reality, application of one of the other proposals might produce a greater reduction in pool size than what the simplified simulation shows.

As with the earlier recovery methods, Figures 13 and 14 compare the French proposal with the cost per local loop and with the Ozark Plan revenue recovery method. Appendix G provides the calculations for developing the simulation of the French proposal. The average SLU and SPF values in the simulator come close to real 1980 values, thereby providing a rough check on the accuracy of the French proposal simulation.*

The French proposal rank order of payers and receivers [Figure 13] also exhibits anomalies in the shift from costs to revenue recovery. A comparison with the Ozark Plan revenue recovery shows that some of the same states that stood out in the \$2 end-user charge [Figure 9] stand out in the French proposal [Figure 14]. Once again, and for similar reasons, Delaware rises in rank and California falls in rank. With the end user picking up the difference between SPF and SLU, the relationships among BOCs change.

^{*}The development of the simulator, Appendix B, Figure 17, gives a BOC average SLU of 7.7% and an average SPF of 25.3%. In reality the 1980 values were an average SLU of 7.64% and an average SPF of 25.8%.

Revenue	nual Average Requirement Local Loop	* /	French Prop Innual Average scovery per Lo	Net IS	1987 Progs
	ital Cost: I.07 Billion		Pool Size \$0.91 Billi		3 3 1
State BOCa		Rank		State BOCa	
w		1		WY	1
MS		2		W	ı
FL.		3		VT	1
NV		4		SD	i
AR		5		PL.	ı
u		6	33.2° 1	101	I
SC		7		NO.	}
WV KY1		\$ 9	10500000000	MAS NH	l
AL.		10		AR.	l
101		11		MT	1
NO		12		AZ	1
٧T		13		102	1
SD		14		OR	1
GA		15		NM	۱,
TX1		16		KY1	Decelves
NM		17		WV	3
AZ		18		LA.	1 3
ID2		18		NE	
NC		20		OK	
TN		21		SC	
∞		22		MY	ı
NH		23	***************************************	IA	
OR		24	55000000000	AL,	
KS		25		ME	
MIT		26	1600000000	TX1	
ME OK		27 28		KS CO	
WE VA		29	*****	WA	
NE.		30		CA	
KY2		31		DE .	
CA		32		MN	
MN	*******	33		NC	1
м		34	T		1-
WA		35	14,144.64	GA	Ì
IÀ		36		VA	
NY		37		KY2	
D€		38		TN	
МО		39		MO	
υT		40		OH1]
IN	*************************************	41		W	10
OH1		42		ut •••	Ĺ
MD		43		IN II	
NJ MA		44		IL NJ	
CL MI		45 45		CT	ĺ
TX2		47		MID	
OH2		48		MA	
IL.		49		PA	
MA		50		OH2	
AI.		51		RI	1
PA		52		TX2	1
DC		53		OC.	
Constitution	<u>anu ese</u>	· · · ·	<u>, producentali</u> Company	1 OW P-4	1
I-Pacific	inya KY2	-South	uerruati IX	1-SW Bell	

Figure 13

Comparison of Ranks: Cost per Loop and French Proposal Revenue Recovery

		Annual Avera		French Proj	oosal:	1
		IS Recovery Local Loop		Annual Averag Recovery per Li		
		Pool Size:	1	Pool Siz		┨
		3.06 Billion		\$0.91 Bill]
	State BOCs		Rank	•	State BOCs	7
	WY		1		WY	1
	NV		2		NV	
	FL		3		Vτ	1
	SD		4		SO	1
	AZ		5	.:	FL.	1
	VT		6		ID1 ND	1
	MT				MS	1
	NO		9		NH	1
	MS		10		AR	
	AR		11		MT	
40	102		12	2.22	AZ	
<u>~</u>	OR NM		13 14		OB 105	
Receives	CA		15		NM.	
æ	00		16		KY1	무
	LA		17		WV	8
	TX1		18		LA	Receives
	OK WA		19		NE.	۰
	NE NE		20 21		OK SC	
	AL		22		MY	
	NY		23		IA	
	IA.		24		AL	
	KY1		25		ME	ļ
	MIN SC		26 27	97-99-9 97-99-9 0-9	TX1 KS	
	ME		28		co	
	NH		29		WA	
	KS.		30		CA	
	- <u>w</u> -	B8888888	31		Œ	ļ
	MEI NC		32 33		MIN NC	Ì
	GA		<u>≈</u> 34	0000000000	- <u>`~</u> - ·	├
	VA		35		GA	
	UT		36		VA	40
	אז		37		KY2	y 8
	KY2		38		TN	1
	DH1		39 40		MO DH1	a a
	wı		41		Wt	87
	IL		42		UT.	4
, A	IN		43		IN	3
•	DE		44	A	IL.	Tomal Tomal
	MA		45 46		NJ CT	B 3
	OH2		47		MD	
	PA		48		MA	į
	СТ		49		PA	Į.
	TX2		50		OH2	1
	Pi.		51		RI Eva	£ .
İ	DC		52 53		TX2 DC	987 Program on Information Gustourcus, Policy, Harvard Utrysnah
		<u> Processoral</u>				
	ID1-Pacific ID2-Mtn Be		South Cinn B		-SW Bell !-Mtn Bell	
	KY1-Cinn E		Ohio B			

Figure 14

Comparison of Ranks: Ozark Plan Revenue Recovery and French Proposal Revenue Recovery

XII. Summary

The FCC referred all proposals for modifying the carrier common line pool to a Joint Board, to be incorporated in their further proceedings on subscriber line charges in late 1986. But the shaded figures in this paper demonstrate the difficulty any one stakeholder has in garnering widespread support for moving from the status quo. Any proposal that disproportionately advantages one group of companies over another is naturally subject to attack from the adversely affected companies. Indeed, it is precisely a series of compromises and paths of least resistance that led to the complex Ozark formula in the first place.

The underlying issues of NTS cost recovery remain, regardless of the revenue recovery method. The positions of some stake-holders may change, their agendas may change, but the treatment of NTS costs recovery is central. The long transitional periods, such as the eight-year shift from SPF% cost allocation to 25% cost allocation, point out the difficulty companies may have in forming coalitions. With each year, the relative positions of the LECs shift. These may cause policy shifts in both the local and interexchange carriers.

This paper only looks at a narrow sliver of the whole question of federal/state cost allocations and revenue recovery. The broad picture needs to account not only for interstate prices and sources of revenue recovery but also to account for the separations process itself. In separations, dollars not assigned to the interstate jurisdiction for recovery must be recovered from state services. Therefore every reduction in interstate assignment increases the state assignment, and opens the question of how these additional costs might be recovered. Simplification of the simulator leaves out various factors that affect the question of pooling and subsidy, such as the inclusion of the independents, the Universal Service Fund, direct assignment of WATS lines, breakdowns of specific end-user charges, and special access surcharges.

In 1986, in anticipation of Joint Board proceedings, LECs, under general auspices of NECA, sought an industry consensus on major issues, including pooling. These groups produced the Unity 1-A agreement, which contains provisions for pool size reduction and movement toward equalizing the burden of NTS cost recovery, enabling the LECs to obtain a consensus.

Like the Bell Atlantic proposal with its five-year phase-out, the Unity 1-A proposal also provides a phase-out of some company costs from the pooling process. However, with the Unity 1-A proposal the phase-out occurs in a four-year period. In its four major components, this agreement:

- Increases subscriber line end-user charges to first \$3 per loop by June 1, 1987, and then to \$4 per loop by June 1, 1988.
- 2. Eliminates mandatory pooling of NTS costs and provides pricing flexibility.

A four-year period provides a transition for the removal of the large local operating companies from the NTS pooling process. Each year removes one-fourth of each company's net participation in the pool (paying or receiving). In return, the companies receive greater pricing flexibility to counter bypass and other forms of competition. If a company chooses to withdraw from the pool, then it must remove all its study areas.

3. Establishes a voluntary NTS pool.

NECA administers the pool for the remaining companies, with a nationwide CCL (carrier common line) charge helping cover these costs. Therefore, carriers not in the pool would still contribute through this CCL charge.

4. Changes the Universal Service Fund (USF).

The agreement divides the high-cost companies into two groups. Those companies with under 200 thousand lines receive increased support from the USF; the remaining high-cost companies receive substantially less from the USF.

Because our particular use of the simulator omits the independents, this paper presents no charts based on the Unity 1-A proposal. However, the FCC data source used for our simulator also contains numbers for the independents; therefore their addition would enable modeling of this proposal — including the phase-out and removal of the large companies and the changes in the USF.

The simulator is a tool for framing questions about the relative impacts of alternative pooling methods. The following are questions that occurred to various reviewers of this paper. These questions are only illustrative and do not reflect the full range of issues:

Since a pooling mechanism benefits some at the expense of others in the pool, are the right companies targeted for benefits? Who decides this?

What is the impact of distinguishing between originating and terminating SLU minutes of use? Would a lower originating charge prevent bypass? If there is a big difference between interstate originating and interstate terminating minutes, what is the impact on the relative positions among companies in the interstate pool?

Considering that high-cost companies are concentrated in rural America and receive a large portion of the subsidies, what value (intrinsic or extrinsic) does interaction with rural America provide to the metropolitan areas?

Should the carrier common line pool be viewed in a different light? For example, could subsidy or revenue flows be based on territory served rather than on overall company operations within a state?

What would be the basis, if any, for further deregulation in this area of interstate pooling?

What is the impact of alternative proposals on averaged toll rates? What is the likely impact on state rates as the interstate allocation of costs changes?

What is the role of pooling in reducing the level of risk associated with the local operating company planning process?

Given the shifts that occur during the transitions from one cost recovery method to another, what coalitions, if any, should companies develop?

APPENDIX A

XIII. Background Numbers for Loop Costs and Revenue Recovery Methods

Figure 15 summarizes the application of the simulator to the five revenue recovery methods discussed in Appendices B through G. Figure 16 provides a summary of BOC ranks for local loop costs and for the five revenue recovery methods.

In Figure 15, the numbers indicate the annual impact of each proposal on a per-loop basis. Comparing these amounts with those in column 2 shows how much an average subscriber would gain or lose under each proposal.

			Annual Net Inte	Annual Net Interstate Dollars Paid (-) or Received (+)	or Received (+)	
State	1 1980 Ozark Plan: Annual Average Ravenue Regulrement per Local Loop	1980 Ozark Plen: Awszące Inferstate Recovery per Local Loop	3 Bell Atlantic Eroposal: Average Intertate Recovery per Local Loop	4 52 End User Charge: Average Interstet Recovery per Local Loop	5 End User Charge with 25% Allocation: Average Interstate Recovery per Local Loop	6 French Proposal: Average Interatate Recovery per Local Loop
*************	5204 5204 5204 5115 5171 518 518 516 511 511	TO # FLY Y S 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(9, 05) (9, 05) (9, 05) (9, 11) (9, 11) (9, 17) (9, 00) (9, 20)	no entry 92.64 930.68 310.68 81.55 11.55 156.11) (156.11) 82.88 537.10	00 entry 314,14 314,14 316,23 50,83 83,82 (31,73 (32,91) (356,03) (356,03) (356,03)	0 entry 81.29 85.04 85.04 80.61 82.03 85.21 86.57
N. N. S. Cent. I.A. S. Cent. I.A. M.	00 51 14 14 14 14 14 14 14 14 14 14 14 14 14	00 05 12 15 15 15 15 15 15 15 15 15 15 15 15 15	70 (56) 5. 1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	70 56 74 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ESONO SELLENDO SELLEN	######################################	\$15,6.25, \$15,7.22 \$17,7.29 \$17,7.29 \$17,7.29 \$1,6.7.10 \$1,6.00 \$1,6.00 \$1,5.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	55.3.4991 52.0.684 52.0.684 52.0.684 53.17.50 50.15.7 50.15.67 51.1.623 57.54 51.56 51.56 51.56 51.56 51.56 51.56 51.56 51.56 51.56 51.56 51.56 51.56 51.56 51.56 51.56	\$5.4 & \$6.6 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
SC SC TW MED BOLL TX SW BOLL VY VY WELL WILL WAY WAY	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	(55.24) (19.24) (19.24) (19.23) (19.23) (19.20) (19.20) (19.20) (19.20) (19.20) (19.20) (19.20) (19.20)	(4) 1.12) 82.4.5.4 82.4.5.4 82.4.5.4 83.3.1.3.6 83.3.1.3.6 83.3.1.3.6 83.3.1.3.6 83.3.1.3.6 83.3.1.3.6 83.3.1.3.6 83.3.1.3.6 83.3.1.3.6 83.3.1.3.6 83.3.1.3.6	\$\$4.08 \$\$4.08 \$9.00	(8.9.4%) (8.4.1.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
acitemolal on marcord 78019	Gonor Dotton	Handle Interestiv				

©1987 Program on Information Resources Policy, Harvard University.

Summary of Application of Simulator in Dollars: BOC Cost per Local Loop and Revenue Recovery Methods

Figure 15

		· · · · · · · · · · · · · · · · · · ·
	6 French Proposal; Average Interstate Recovery per Local Loop	「おいいのおお紹立らな」だけでは行びがいませいだれるのはは「はっぱっぱらいないののははなくよのななだよっかはい」
or Received (+)	5 End User Charge with 25% Alicetion; Average interstate Racovery per Local Loop	
Annual Net Interstate Dollars Paid (-) o	4 52 End User Charge: Average Interests of Recovery per Local Loop	_ \$4.50.50.50.50.50.50.50.50.50.50.50.50.50.
Annual Net Intere	3 Bell Atlantic Proposal: Average interstate Recovery per Local Loop	・ ここ できまる できまる できない はんから でんかい こうかい はい できまる できまる でんかっかい できまる できまる できない できまる できまる できまる できまる できまる できまる できまる できまる
	2 1980 Ozazk Plan; Average Interstate Recovery per Local Loop	
	1980 Ozark Plan: Annual Average Revenue Requirement per Local Loop	1 1 2 4 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2
	State Octate	AAK AAR AAR AAR AAR AAR AAR AAR AAR AAR

@1987 Program on Information Resources Policy, Harvard University.

Figure 16

Summary of Application of Simulator in Ranks: BOC Cost per Local Loop and Revenue Recovery Methods

APPENDIX B

XIV. Development of Simulator: Ozark Plan Revenue Recovery

This appendix develops the simulator using 1980 FCC data and the Ozark Plan mechanisms. The development consists of two steps: first, an explanation of the basic data [Figure 17] underlying the rest of the model; second, the calculations needed to complete the model [Figure 18].

Using 1980 FCC data, Figure 17 provides the numbers for the closed theoretical system. Note the caveats listed in Section IV, particularly the point limiting the simulator to BOCs.

Column A provides the subscriber line (local loop) revenue requirement for each state BOC. The entries include costs for subscriber line plant including drops and blocks, but excluding customer premises equipment (CPE), inside wiring, and non-traffic sensitive central office equipment. Column B provides the number of local loops for each state BOC.

Columns C, D, and E provide the Ozark formula and its elements, or the mechanism that divides the subscriber line revenue requirement into state and interstate portions. This simulator considers only the interstate formula. The SPF (subscriber plant factor) results from a relationship between a BOC's SLU (subscriber line use) and its CSR (composite station rate) ratio.

	A	В	c	D	E
			1980	1980	1980
State	Revenue Requirement	Number	Interstate	Interstate	Interstat
BOCs	Subscriber Line	Local Loops	SPF •	sin 🖊	CSR Ratio
AK	no entry	no entry	no entry	no entry	
AL	\$230,050,988	1,127,256	19.69	6.04	no entry
AR	\$120,325,609	559,250	25.64	8.16	1.21
AZ.	\$189,470,324	1,104,911	42.81	11.36	1.47
CA	\$1,425,602,352	9,626,078	23,74	5,74	1,65
co	5213,680,846	1,274,586	38.1%	10.43	1.40
CT	\$172,684,094	1,475,694	31,4%	10,8%	1.03
DC .	\$49,890,762	675,367	40.64	12.54	1,20
DE	\$39,064,808	276,325	34,14	12,84	0.91
FL	\$631,721,264	2,739,338	34.00	9.0%	1.47
GA HI	\$332,992,144	1,811,211	26.64	8.0%	1,24
IA	no entry \$119,077,743	no entry	no entry	no entry	no ent <i>r</i> y
ID Mtn Bell		842,052	26.35	8.36	1.17
ID Pacif NW	\$44,156,366 \$3,836,713	258,569 19,753	34.24	10.14	1.26
IL	\$495,979,900	4,557,757	37.0% 25.7%	11.0% 7.9%	1.26
ĪĐ	\$175,020,402	1,328,456	21,43	6,94	1.20
KS	\$134,860,914	837,056	26,44	0.14	1,16 1,21
KY Cinn Bell	\$158,461,500	776,017	19.60	6.44	1.11
KY 5. Cent	\$17,274,366	113, 194	12.04	4.15	1.05
I.A	\$317,742,016	1,519,012	16.99	5,64	1.27
MA.	5289,852,712	2,678,865	25.90	8.30	1.14
MD	\$245,308,382	1,978,863	20.8%	6.84	1.11
MΣ	\$58,400,108	374,360	25,8%	8.11	1,16
MĪ	\$501,450,072	3,464,158	16.5%	5.04	1,23
MIN	\$208,099,406	1,417,139	24.64	7.1%	1.30
MO NS	\$228,310,618	1,669,471	25.94	8.0%	1.19
ns MT	\$176,230,106	736,263	23,2	7.34	1.17
NC	\$41,072,753 \$194,011,368	256,335	37.70	10.69	1.36
ND	\$41,135,675	1,138,557 213,064	21.6% 29.0%	6.8%	1.16
NÊ	\$59,383,458	386,161	34.8%	8.9% 10.6%	1.21
NH	\$61,199,444	366, 292	39.34	14.64	1.22 0.92
LA	\$427,891,228	3,519,908	30.5	11.33	0.92
₽4	\$73,142,207	418,828	32.31	9.34	1.32
₹V	\$31,425,937	136,830	62.40	19.09	1.22
ry .	\$1,117,490,768	7,903,416	26,64	8,44	1.16
OH Ohio Bell	\$364,183,504	2,830,630	16.4%	5.70	1.19
OH Cinn Bell	\$60,964,506	550,268	18.4%	5.76	1.19
OK .	\$174,085,320	1,094,982	29.74	8.8%	1.26
OR PA	\$139,097,814	848,911	29,9%	8.6%	1.32
ŭ	\$435,884,500 \$43,851,843	4,252,177	20.5%	7.0%	1.05
SC .		419,281	26.50	9.49	0.98
SD .	5160,226,210 \$40,838,719	771,790 215,200	19.5%	6,24	1.15
N	\$254,003,174	1,497,280	33.0% 20.0%	10.24	1.19
X Mtn Bell	\$18,970,242	163,355	31.24	9.24	1.19 1.27
X SN Bell	\$844,792,704	4,773,602	20.74	5,78	1.40
T	\$71,288,146	525,666	27.64	7.74	1,36
'A	\$264,483,516	1,699,549	25.50	7.80	1.20
T	\$33,577,611	174,820	41.64	14.69	1.00
iA.	\$203,069,434	1,429,591	27.6%	7.76	1.30
II 	\$165,156,858	1,410,520	19.2%	6.01	1,17
IV	\$115,527,238	562,752	20.24	6.94	1.04
η	\$53,137,895	102,696	50.64	15,34	1.23
'otal	\$12,069,438,675	60, 983, 462	25,3%	7,75	1,22

Boxes indicate nationwide averages calculated from data in Figure 18,

©1987 Program on Information Resources Policy, Harvard University.

Figure 17

The Simulator: Revenue Requirements, Number of Local Loops, and Ozark Plan Cost Allocators

	!			
				l r
	F	G State Toll	H Exchange	fotal
State	Interstate SLU Minutes	SLU Minutes	SLU Minutes	SLU Minutes
BOCs	of Use	of Use	of Use	of Use
	01 036	VI VA	01 030	V. 050
AK	no entry	no entry	no entry	no entry
AL	1,466,287,056	1,087,483,520	22,169,691,136	24,723,461,712
AR	822,258,952	882,240,232	8,254,921,984	9,959,421,168
AZ	2,013,047,984	763,842,224	15, 455, 652, 480	18,232,542,688
CA	8,949,711,616	23,292,580,352	129,888,664,535	162,130,956,503
co	2,532,224,960	1,199,868,688	19, 979, 657, 152	23,711,950,800
CT DC	2,706,023,584	2,433,161,120	19,545,605,376	24,686,790,080
DE	1,398,579,104 573,782,416	111,279,091	12,190,194,816 4,049,497,152	13,588,773,920
FL	4,614,584,448	2,836,645,120	42, 114, 445, 408	4,734,558,659 49,565,674,976
GA	3, 267, 607, 264	1,718,526,656	34,395,973,746	39,382,107,666
HI	no entry	no entry	no entry	no entry
IA	1,035,750,176	1,142,437,056	10,690,085,760	12,868,272,992
ID Mtn Bell	411,543,676	364,082,768	3, 325, 035, 456	4,100,661,900
ID Pacif NW	36,044,731	28,748,812	281,273,680	346,067,223
IL	5,952,480,896	2,611,987,456	69,512,100,186	78,076,568,538
IN	1,787,572,288	1,238,074,496	22,872,494,080	25,898,140,864
KS	1,222,804,016	1,191,624,560	11,537,320,576	13,951,749,152
KY Cinn Bell	1,034,808,560	762,537,592	14,689,464,448	16,486,810,600
XY S. Cent LA	97,102,075 1,820,102,544	43,461,591 1,862,769,600	2,179,524,128	2,320,087,794
XX.	3,816,691,072	3,649,662,432	29,852,705,536 38,472,644,154	33,535,577,680 45,938,997,658
MD	2,688,094,912	1,111,241,952	37,117,069,644	40,916,406,508
ME	505, 297, 720	608,224,080	4,472,698,048	5,586,219,848
MI	3,081,944,576	5,327,288,960	56, 350, 852, 222	64,760,085,758
HOI	1,698,690,576	1,128,763,312	21, 216, 593, 664	24,044,067,552
MC	2,503,609,472	1,574,815,168	29, 332, 289, 024	33,410,713,664
MS	1,052,788,784	915,922,048	12,893,987,200	14,862,698,032
MT NC	392,086,056	443,121,800	2,756,619,968	3,591,827,824
ND	1,534,884,624 294,265,452	1,598,788,320	19,040,552,192 2,739,642,848	22,174,225,136
NE	676, 243, 496	30,633,032	5,704,242,816	3,316,256,268 6,419,119,344
NH	832, 131, 464	505,229,600	4,005,944,000	5,343,305,064
NJ	6,884,224,960	9,947,543,040	43,628,713,497	60,460,481,497
HOM .	705,502,664	410,803,452	6,114,439,808	7,230,745,924
MA	369,537,388	80,449,221	1,631,640,672	2,081,627,281
NY	9,832,597,120	4,536,487,424	106,545,512,862	120,914,597,406
OH Ohio Bell	3,110,785,472	2,783,116,128	49, 238, 957, 741	55,132,859,341
OH Cizn Berll OK	653,777,224	27,711,908	11,370,809,088	12,052,298,220
OK OR	1,624,844,896 1,183,539,024	1,692,021,040	15,335,177,984	18,652,043,920
PA	5,356,744,320	4,656,879,488	11,164,935,552 67,129,614,979	13,489,602,080
RI	687, 248, 248	290,032,104	5, 989, 091, 968	6,966,372,320
sc	1,044,777,896	767,684,216	14, 330, 969, 856	16,143,431,968
SD	294, 958, 212	273,968,844	2,400,496,928	2,969,423,984
TN	2,087,173,184	1,315,459,120	29, 449, 767, 424	32,852,399,728
TX Mtn Bell	298,018,388	79,611,039	2,233,166,080	2,610,795,507
TX SW Bell	5,238,760,832	6,964,392,192	77,518,845,666	89,721,998,690
UT VA	786,880,120	596,152,744	8,575,789,248	9,958,827,112
VA VT	2,584,649,152 386,585,808	1,581,832,384 272,716,144	28,793,267,200 2,028,394,608	32,959,748,736
WA	1,747,228,688	1,719,933,680	18,991,522,560	2,687,696,560 22,458,684,928
WI	1,517,497,312	1,510,033,456	20,503,772,928	23,531,303,696
WV	824, 974, 824	770,750,392	10, 257, 479, 424	11,853,204,640
MY	428,663,968	263,155,940	1,942,046,672	2,633,866,580
Total	108,470,014,250	102,437,273,086	1,242,262,056,160	1,453,169,343,496
10021	108,470,014,250	102,431,273,000	1,242,202,030,100	1,433,169,343,496

©1987 Program on Information Resources Policy, Harvard University.

Figure 17 (continued)

The Simulator: Revenue Requirements, Number of Local Loops, and Ozark Plan Cost Allocators

The SLU% [Column D] is related to SLU minutes of use [Columns F,G,H, and I]. The SLU measure is the percentage of interstate minutes out of each BOC's total minutes of use. For example, each BOC carries interstate toll calls, state toll calls, and exchange calls. The minutes for each of these calls is totaled, giving columns of SLU minutes of use — Column F for interstate toll, Column G for state toll, and Column H for exchange. Column I gives the total SLU minutes of use for each BOC. While the SLU% [Column D] is slightly different from the percentages derived by dividing interstate SLU minutes of use [Column F] by total SLU minutes of use [Column I], these differences are insignificant.

In Figure 17, the boxes around the last numbers in the SPF% and SLU% columns indicate two points: first, these percents are nationwide BOC averages and not totals; second, these two numbers were derived from the calculations for Figure 18. With these two exceptions, all other numbers in Figure 17 come directly from the FCC data.

The calculations for Figure 18 complete the simulator. The interstate subscriber line revenue requirement for each BOC [Column J] is the subscriber line revenue requirement [Column A] multiplied by the SPF% [Column C]. The entries in Column J are then totaled to give a total interstate revenue requirement. (Note that at this point the nationwide BOC average SPF has yet to be calculated.)

After the total interstate revenue requirement is determined, it is then possible to derive an average nationwide BOC unit price. This total interstate revenue requirement [Column J] is divided by the total interstate SLU minutes of use [Column F] to give a unit price of \$0.02819. (Total interstate SLU minutes of use represents the demand for interstate access, where price x demand = revenues.)

Next a theoretical figure is developed [Column L] for each BOC's interstate revenues based on the unit price [Column K] multiplied by each BOC's interstate SLU minutes of use [Column F]. Within the closed simulator, these revenues are based on a single average price. In reality, while there is a nationwide price schedule, this schedule contains variables, such as distance traveled or direct dial versus operator assistance.

Continuing, subtract [Column J] from [Column L] to show which companies pay and which companies receive revenues from the interstate pool [Column M]. The "+" and "-" symbols in Column N also indicate which states pay or receive from the interstate pool.

	J	ĸ	L	н	¥
	j i		I	Interstate Pool:	
	Interstate		Unit Frice	Annual Net Dollars;	Symbols;
State BOCs	Subscriber Line		x Interstate	Paid (-)	Paid (-) o
BOCS	Revenue Requirements	Unit Price	\$10 Minutes	or Received (+)	Received (
AK	no entry	no entry	no entry	no entry	no entry
AL	\$45,089,994	\$0.02819	\$41,336,460	\$3,753,533	+
AR	\$31,044,007	\$0.02819	\$23,180,505	\$7,863,502	+
AZ	\$81,093,299	\$G.02819	\$56,750,332	\$24,342,966	+
CA	\$337,067,757	\$0.02619	8252,303,529	\$85,564,229	+
co	\$61,412,402	\$0,02819	871,386,579	\$10,025,824	+
CT DC	854, 222, 806	\$0.02819 \$0.02819	\$76,342,561	(\$22,119,756)	-
DE	\$20,255,649 \$13,321,100	\$0.02819	\$39,427,689 \$16,175,642	(\$19,172,039) (\$2,854,542)	-
PL	\$214,785,230	\$0.02819	\$130,090,889	584,694,341	-
GA	889,241,895	\$0.02819	\$92,117,923	(\$2,876,028)	-
HI	no entry	no entry	no entry	no entry	no entry
IA	\$31,317,446	\$0.02819	\$29,199,089	\$2,118,358	+
ID Mtn Bell	\$15,101,477	\$0.02819	\$11,601,929	\$3,499,548	+
ID Pacif NW	\$1,419,584	\$0.02619	\$1,016,146	\$403,438	+
IN IT	\$127,466,034	\$0.02819	\$167,807,858	(\$40,341,024)	-
KS	\$37,454,366 \$35,603,201	\$0.02819 \$0.02819	\$50,393,892	(\$12,939,525)	
KY Cinn Bell	\$35,603,201 \$31,050,471	\$0.02819	\$34,472,370 \$29,172,543	\$1,130,912 \$1,885,928	+
KY S. Cent	\$2,072,924	\$0.02819	\$2,737,429	(\$664,505)	ž
LA	\$60,053,241	\$0.02819	\$51,310,960	\$8,742,281	+
MA	\$75,071,852	50.02819	\$107,597,280	(\$32,525,427)	<u>-</u>
MD	\$51,024,143	\$0,02819	\$75,780,747	(\$24,756,604)	-
KE	\$15,067,228	50.02819	\$14,244,973	\$822,255	•
MI MM	\$82,739,262	\$0.02819	\$86,883,860	(\$4,144,598)	-
MO :	\$51,192,454 \$59,132,450	\$0.02819 \$0.02819	\$47,688,205 \$70,579,872	\$3,304,249	+
MS	\$40,885,385	\$0.02819	\$29,679,428	(\$11,447,422) \$11,205,956	-
MT	\$15,484,428	\$0.02819	\$11,053,395	\$4,431,033	÷
NC	\$41,906,455	\$0,02819	\$43,270,311	(\$1,363,856)	-
ND	\$11,929,346	\$0,02819	\$8,295,710	\$3,633,636	-+
34	\$20,665,443	\$0.02819	\$19,064,147	\$1,601,296	+
MA Nj	\$24,051,381	\$0.02819	\$23,458,823	\$592,558	+
NM :	\$130,506,825 \$23,624,933	\$0.02819 \$0.02819	\$194,074,885	(\$63,568,060)	-
NV I	\$19,609,785	\$0.02819	\$19,889,000 \$10,417,720	\$3,735,933 \$9,192,065	
NY	\$297, 252, 544	\$0.02819	\$277,193,172	\$20,059,372	
OH Ohio Bell	\$67,009,765	\$0.02819	\$87,696,921	(\$20,687,156)	<u>.</u>
OH Cinn Beli	\$11,217,469	\$0.02819	\$18,430,795	(\$7,213,326)	-
OK	\$51,703,340	\$0.02819	\$45,806,403	\$5,896,937	+
OR PA	\$41,590,246	30.02619	\$33,365,441	\$8,224,806	+
ra RI	\$89,356,323	\$0.02819 \$0.02819	\$151,013,301	(\$61,656,979)	-
SC	\$11,620,738 \$31,244,111	\$0,02819 \$0,02819	\$19,374,385 \$29,453,591	(\$7,753,647) \$1,790,519	-
SD	\$13,476,777	\$0.02819	\$8,315,240	\$5,161,538	:
TN	\$50,800,635	80.02819	\$56,840,014	(\$8,039,379)	
TX Mtn Bell	\$5,918,716	\$0,D2819	\$8,401,510	(\$2,482,794)	-
TX SW Bell	\$174,872,090	50.02819	\$147,687,199	\$27,184,690	+
UT VA	\$19,675,526	\$0.02019	\$22,183,132	(\$2,507,603)	-
VT	\$67,443,297	\$0.02819 \$0.02819	\$72,864,482	(\$5,421,185)	
WA	\$13,968,286 \$56,047,164	\$0.02819	\$10,898,336 \$49,256,555	\$3,069,950 \$6,790,609	+
MI.	\$31,710,501	\$0.02819	\$42,780,141	(511,069,640)	•
WV	\$23,336,502	\$0.02819	823,257,069	\$79,433	
MÅ	\$26,887,775	\$0.02819	\$12,064,572	\$14,803,203	+
Total	\$3,057,904,940	\$0,02819	\$3,057,904,940	50	

O1987 Program on Information Resources Policy, Harvard University.

Figure 18

The Simulator: Derivations of Interstate Revenue Requirements, Average Unit Price, Revenues Collected Based on Unit Price, and Dollars Paid or Received in Revenue Sharing

APPENDIX C

XV. Application of the Ozark Plan: Numerical Amounts and Ranks

Figure 19 gives the numerical amounts associated with the cost per local loop, the number of local loops, and the Ozark Plan elements (interstate SLU minutes of use, SLU%, and SPF%).

Figure 19, Column 1 consists of each BOC's subscriber line revenue requirement [Figure 17, Column A] divided by its number of local loops [Figure 17, Column B]. This column points out that the costs for local loops vary state by state. This disparity raises the initial question: Should companies with low local loop costs help pay for companies with high local loop costs?

Figure 19, Column 6 illustrates the average interstate payment per local loop. In the revenue sharing process, those BOCs with a negative amount pay out dollars (indicated by parentheses) and those with a positive amount receive dollars. To derive Column 6, divide each BOC's portion of the revenue sharing process [Figure 18, Column M] by its number of local loops [Figure 17, Column B].

Four columns in Figure 19 provide the variables that determine whether a company pays or receives from the interstate revenue sharing process, indicated by Column 6. These variables are the number of local loops [Column 2], the interstate SLU minutes of use [Column 3], the SLU% [Column 4], and the SPF% [Column 5].

Figure 20 provides the BOC ranks for each column of Figure 19. However, Figure 20 has an additional Column 7 which indicates whether or not a company changes its rank from its local loop cost position [Column 1] to its position in the revenue recovery process [Column 6]. For example, West Virginia has lost the most ground with a downward shift in rank of 23 places, while California has gained the most with an upward shift of 17 places.

	1 1980 Annual Average	2	3 Interstate	1980	1980	6 Ozark Pian: Annual Net
State BOCs	Revenue Requirement per Local Loop	Number Local Loops	SLU Minutes of Use	Interstate SLU %	Interstate SPF %	Interstate Recover per Local Loop
AK	no entry	no entry	no entry	no entry	no entry	no entry
AL	\$204	1,127,256	1,466,287,056	6.04	19,64	\$3.33
AR I	\$215	559,250	822,258,952	8.1%	25.8%	\$14.06
A2	\$171	1,104,911	2,013,047,984	11.34	42.84	\$22.03
CA CO	\$148 \$166	9,626,078 1,274,586	8,949,711,61 <u>6</u> 2,532,224,960	10.44	36.1	\$8.89 \$7.87
č ř	\$117	1,475,694	2,700,023,584	10.64	31.45	(\$14,99)
ĎĆ I	\$74	675,367	1,398,579,104	12.54	40,6%	(\$28.39)
DE	\$141	276,325	573,782,416	12,6%	34.14	(\$10.33)
FL	\$231	2,739,336	4,614,584,448	9.04	34.0%	\$30.92
GA	5164	1,811,211 no entry	3,267,607,264 no entry	8.0% no entry	26.8% no entry	(\$1.59) no entry
HI IA	no entry \$141	842,052	1,035,750,176	8.34	26.34	\$2.52
ID Mtn Bell	\$171	258,569	411,543,676	10.14	34.24	\$13.53
ID Pacif ##	\$194	19,753	36,044,731	11.04	37.0%	\$20.42
1L	5109	4,557,757	5,952,480,896	7.9%	25.74	(\$6.85)
IN	\$132	1,328,456	1,787,572,288	6.84	21.45	(\$9.74)
KS KY Cinn Bell	\$161 \$204	837,056 776,017	1,222,804,016 1,034,808,560	6.45	26.44 19.64	\$1.35 \$2.43
KY S. Cent	\$153	113,194	97,102,075	4.15	12.00	(55.87)
LA .	\$209	1,519,012	1,820,102,544	5.64	18.94	\$5.76
MA	\$106	2,678,865	3,816,691,072	8.34	25.94	(\$12.14)
MO j	\$124	1,978,863	2,688,094,912	6.84	20.00	(\$12,51)
ME I	\$156	374,360	505,297,720	8.14	25,61	\$2.20
HI H	\$145 \$147	3,464,158	3,081,944,576 1,698,690,576	5.0% 7.1%	16.50	(\$1.20) \$2.33
йо I	\$137	1,669,471	2,503,609,472	8.04	25.94	(\$6.86)
MS .	\$239	736,263	1,052,788,784	7.34	23.24	\$15.22
NT TH	\$160	256,335	392,006,056	10.64	37.74	\$17.29
NC	\$170	1,138,557	1,534,864,624	6,64	21.64	(\$1.20)
ND NE	\$193 \$154	213,064 386,161	294, 265, 452 676, 243, 496	8.94	29.04	\$17.05 \$4.15
NH I	\$167	366,292	832,131,464	14.69	39.34	\$1.62
NJ I	\$122	3,519,908	6,884,224,960	11.31	30.5%	(\$18,06)
NM .	\$175	418,828	705,502,664	9,34	32,3%	\$8.92
VV.	\$230	136,830	369,537,388	19.04	62.49	\$67.18
NY OH Chio Bell	\$141 \$129	7,903,416 2,830,630	9,832,597,120 3,110,785,472	8.4% 5.7%	26,64 18.44	\$2.54 (\$7,31)
OH Chio Bell	5129 5111	550,268	653,777,224	5.74	18.49	(\$13.11)
OK CIWE BAIL	\$159	1,094,982	1,624,844,896	8.84	29,74	\$5.39
OR	\$164	648,911	1,183,539,024	8.6%	29.94	\$9.69
PA	\$103	4,252,177	5,356,744,320	7.0%	20.5%	(\$14.50)
RI SC	\$105	419,261	687,248,248	9.4%	26.50	(\$18.49)
SC SD	\$208 \$190	771,790 215,200	1,044,777,896 294,958,212	6.2%	33.0	\$2.32 \$23.98
TH	\$170	1,497,280	2,087,173,184	6,24	20.0	(\$5,37)
TX Mtn Bell	\$116	163,355	298,018,368	9,24	31.24	(\$15.20)
TX SW Beil	\$177	4,773,602	5,238,760,832	5.74	20.74	\$5.69
UŤ	\$136	525,666	786,880,120	7.7%	27.64	(84.77)
VA VT	\$156 \$192	1,699,549	2,584,649,152 386,585,808	7.89	25.59	(\$3.19) \$17.56
WA	\$192 \$142	1,429,591	1,747,228,688	7.76	27.64	\$17.36 \$4.75
ÎN ÎN	\$117	1,410,520	1,517,497,312	6.04	19.24	(\$7,85)
WV]	\$205	562,752	824,974,824	6,9%	20.24	\$0.14
HY .	\$291	182,696	428,663,968	15.3%	1 50.6%	\$81.03

©1987 Program on Information Resources Policy, Harvard University.

Figure 19

Number of Local Loops, Costs, Ozark Plan Variables, and Ozark Plan Revenue Recovery

	1 1980 Annual Average	2	3 Interstate	1980	5 1980	6 Ozark Plan; Annual Net
State BOCs	Revenue Requirement per Local Loop	Number Local Loops	SLU Minutes of Use	Interstate SLU 6	Interstate 5PF 4	Interstate Recover per Local Loop
	RANK	RANK	RANK	RANK	RANK	RANK
AK AL	10	- 24	26	45	_ 45	
AR	5	24 35	36	27	31	22 11
AZ	18	25	18	6	3 1	\$
CA	32	1	2	46	36	15
CO CT	22 46	22 17	15 12	13 10	7 16	16
DC	53	33	27	16	5	49 53
DE	36	43	42	5	12	44
FL	3	9	7	19	13	3
GA HI	1\$	12	9	30	24	34
IY II	36	_ 28	32	25	28	21
ID Mtn Bell	19	44	45	15	ii l	12
IO Pacif NW	11	53	53	9	9	6
IL In	49 41	4 21	4 20	31	33	42
KS	25	21	20 28	40 26	39 27	43 30
KY Cinn Bell	9	30	33	1 42	46	25
KY S. Cent	31	52	52	53	53	38
LA HA	6 50	15	19	51	49	17
MA MD	30 43	10 11	0 13	24 39	30 40	45
ME	28	41	43	28	32	4.6 2.8
MI	34	7	11	52	52	32
MN MO	33 39	19 14	22 16	36	35	26
MS	2 1	32	30	29	29 37	39 10
MT	26	45	46	1 12	8	9
NC :	20	23	24	41	36	33
MD Ne	12 30	47 40	51 40	20 11	21 10	. 9
NH I	23	42	34	'4	6	21 29
NJ	44	6	3	7	ıš l	51
NK	17	39	38	17	15	14
NV NY	4 37	51	48 1	1 23	1 1	2
OH Ohio Bell	42	2	10	47	25 51	23 40
OH Cinn Bell	48	36	41	50	50	47
OX	27	26	23	21	20	19
OR PA	24 52	27 5	29 5	22	19 42	13
RI !	51	3ể Ì	39	16	26	48 52
sc]	7	31	31	44	47	27
SD 1	14	46	50	14	14	4
IN IX Mitn Bell	21 47	16 50	17 49	43 16	44 17	37 50
TX SW Bell	16	3 1	6	49	41	50 18
UT	40	37	37	34	22	36
VA VT	29 13	13	14	32	34	35
VT NA	13 35	49 18	47 21	3 3	4 23	7
VI I	45	20	25	46	48	20 4 1
ev	8	34	35	38	43	31
ey I	1	48	44	1 2 1	2	ī

©1987 Program on Information Resources Policy, Harvard University.

Figure 20

BOC Ranks Associated with Number of Local Loops, Costs, Ozark Plan Variables, and Ozark Plan Revenue Recovery

APPENDIX D

XVI. Application of the Simulator: Bell Atlantic Proposal

Figure 21 applies the mechanism of the Bell Atlantic proposal to the simulator developed in Appendix B, Figures 17 and 18. In our simulation, the cap is arbitrarily set at the simulator's average unit price. In reality, the cap and surcharge rate are different from those in the simulator. Furthermore, the simulator ignores the effects of the High Cost Fund, the transition from SPF% to 25% cost allocation, and changes in the cap slated for 1987 and 1988.

In Figure 21, Column O is the average unit price per minute for each BOC. Each entry is a BOC's interstate revenue requirement [Column J, Figure 18] divided by its interstate SLU minutes of use [Column F, Figure 17]. If a BOC's entry in Column O is greater than the simulator's average unit price of \$0.02819 [Column K, Figure 18], then the entry in Column P is the difference between the Column O entry and \$0.02819. If a BOC's entry in Column O is less than or equal to zero, then the entry in Column P is equal to zero.

Column Q develops the size of the surcharge (or "excess cost") pool. The price above the cap multiplied by the interstate SLU minutes of use [Column F, Figure 17] determines the size of the surcharge pool. To develop the surcharge, divide the total surcharge pool of Column Q by the total interstate SLU minutes of use [Column F, Figure 17]. Thus, the average surcharge unit price is equal to \$0.00337.

Next, Column R calculates the new prices. If a BOC's prices fell above the cap (the entry in Column P is greater than zero), then its entry is the cap (the average unit price) plus the surcharge. Otherwise, the BOC's entry is its own unit price in Column O plus the surcharge.

Column S produces the revenues for each BOC under the simulation of the Bell Atlantic proposal by multiplying the final unit price [Column R] by the interstate SLU minutes of use [Column F, Figure 17].

The final step is to calculate the dollars paid or received in the revenue sharing process. To derive Column T, subtract each company's simulated Bell Atlantic revenues [Column S] from its interstate subscriber line revenue requirements [Column J, Figure 18].

		If Unit Price	Price Above AUP (or Zero)	Final Price; If Above AUP, Then	S Final Price	T Bell Atlantic Proposal: Interstate
State J	For Each BOC: Average Unit Price (AUP)	is Greater than AUP, Then Difference, Otherwise Zero	x Interstate SLU Minutes of Use	AUP + Surcharge, Otherwise BOC's Unit Price + Surcharge	A Interstate SLU Minutes of Use	Pool: Annual Net Dollars Paid (-) or Received (+)
AK.	no entry	00 entry	no entry	no entry	no entry	no entry
•	50,03775454	0.00956329	57,863,502	50,03156181	\$25,951,981	(\$1, 198, 681) \$5.042.026
	50,04028384	0.01209259	\$24, 342, 966	50.03156181	\$63, 535, 439	\$17,557,860
	\$0.03775180	950956000	585, 564, 229	50.03156181	\$282,469,102	\$55, 398, 655
	50.02002302	0,00000000	05	50.0233958	867, 350, 373	51,490,798
	\$0.01448302	0.0000000	80	\$0.01785358	524,969,649	(54.714.000)
	\$0,02321629	0,00000000	0\$	\$0.02658685	\$15,255,070	(51,933,970)
	50.04654487	0.01035362	\$84, 694, 341	\$0.03156181	\$145,644,640	569,140,590
	\$0.02731106	0,00000000	95	\$0.03068165	\$100,255,573	(\$11,013,679)
	no entry	VANCO 00	No entry	no entry	no entry	no entry
Mr. Day 1	90,03023849	4 A C C C C C C C C C C C C C C C C C C	52, 118, 538	\$0.03156181	\$32,690,151	(\$1,372,704)
Pacif NA	20.03000.04	0.01119270	0 FO 76 FE 199	10170170	\$12,989,064	52,112,414
	505.05160.05	00000000		107017070	100'10'10'	5281,947
	50.02095264	0.00000000	Ç.	SO 0242020	243, 436, 631	(\$20,063,216)
	\$0.02911610	0.00092485	\$1.130.912	175755000	764 664 664	(92, 023, 126)
Cinn Bell	\$0.03001374	0.00182249	\$1.885.928	50.03756183	600,000,000	(52, 990, 627)
5. Cent	50.02134788	0.0000000	50	SO 02421845	424,000,424	(91, 601, 960)
	50.03299443	0.00480318	5.8.747.781	40.02154181	277 200 234	(687/)754)
	50 01966936	000000000	107/77/00	79191710100	267 'C\$4'/00	\$2, 407, 509
	SO 01898153	000000000	9	AVE. 00.00	207,040,004	(\$12,864,401)
	50.02981852	0.00162727	SR22, 255	50.03156181	CCC 040 418	(567,000,84)
	50.02684645	0.00000000	000	10010000	111 10 10 10 10 10 10 10 10 10 10 10 10	(E88 (O88)
	50.03013642	0.00194517	83.304.249	50 03156181	461 613 510	(1681, 181, 691)
	SO 02363888	0.0000000	05	10000340	200 200 200	(967, 421, 296)
	50.03883532	0.01064407	511.205.956	50.03156181	000 100 600	(0.0 PEF .84)
	50.03949242	0.01130117	\$4.431.033	1010110101	072 777 077	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	\$0.02730267	0.00000000	CM	40505000	000000000000000000000000000000000000000	785 'SOT'75
	50.04053940	0.01234816	51.611.616	CE (A)160 09	700 1670 174	(42, 17, 426)
	50.03055918	0.00236793	81 601 296	40.04156.083	0001 000 100	92, 041, 795
	50.02890334	0.00071210	850.000	20,021,64.91	COP (COC OCO)	
	50.01895737	0,0000000		10101000 US	0161031010	(461,215,24)
	50.03348667	0.00529542	\$1,715.911	50 03156181	170 370 003	(47, 203, 719)
_	50.05306577	0.02487452	59,142,065	\$0.03156181	611 669 744	TAR LOCK TO
_	30.03023134	0.00204009	CCE .050 .058		107/200/114	STO STATE
Ohio Bell	1111111111	0.0000000	08	C3 110150 03	000 100 100	(570,787,051)
Cinn Bell	50.01715794	0.0000000	S v	03803000 08	613 613	(\$10,485,101)
	SO DETREME	6 003600	65 884 837	000000000000000000000000000000000000000	100 171 100	(865,203,398)
	01070150.04	CEG10300	100 acc 54	1919E1E0.00	551, 283, U47	\$420,293
	00101910	00000000	909 1177 194	TBT96160	460,400,000	94,235,612
_	20 01 60 00 00	00000000	9	COTCOO 00	1,0,111,016	(\$18,055,248)
_	000000000000000000000000000000000000000	ACE 15.100 0	• :	000000000000000000000000000000000000000	701 / 20 / 1014	(52, 316, 414)
	200000000000000000000000000000000000000	0.000000	ATC TOKY TY	50.03156161	\$32,975,082	(1, 130, 91)
-7 4	40.040.040	775667000	Ţ,	\$0.03156161	59, 309, 415	84,167,362
	0.02435944	000000	2	\$0.02771601	\$57,835,585	o
Man Bell	P. 00 20 00 00	0.000000	DØ .	\$0.02323060	\$6,923,205	•
	50.0338043	0.0000000000000000000000000000000000000	\$27, 184, 890	50,03156181	\$165,344,777	59, 527, 313
** (0.0200448	0000000	D .	50.02837504	\$22,327,758	
•> 0	67 (60 67 00 00	000000000000000000000000000000000000000	08	50.02946436	\$76,155,021	(\$8,711,725)
	0.02013243	C170000	93, 069, 930	\$0.03156181	\$12,201,348	51,766,938
	0.0200.00	000000000000000000000000000000000000000	EOB (06/ 184	18135130141	102, 145, 701	\$901,463
, 4	6466666		700	FT(97470-00	\$36,625,322	(55, 114, 821)
- 47	50.06272460	0.03453335	\$14.801.203	50 03156181	669 619	(\$2,701,197)
			200 (200 (200	70,000	111.696.516	12, 356, 364
Simulator's Average	20,000,000		\$365,605,097	Total Surcharge Pool		
	69161870.0			Average surcharge unit	43, 057, 904, 940	0\$

31987 Program on Information Resources Policy, Harvard University.

Bell Atlantic Proposal: Application of the Simulator

Figure 21

APPENDIX E

XVII. Application of the Simulator: \$2 End-User Charge

Figure 22 presents the application of the simulator to the \$2 end-user charge. As with the Bell Atlantic proposal, Figures 17 and 18 provide the basis for the simulation.

Since the \$2 end-user charge is a flat, monthly, per-loop rate, Column U multiplies each BOC's number of local loops times the yearly payment of \$24 (\$2 per month). Breakdowns for the local loop numbers by residential and single line business, by multi-line business, and by Centrex were unavailable. In reality, both multi-line business and Centrex loops recovered end-user charges of up to \$6 per loop.

Column V calculates the new interstate subscriber line revenue requirements by subtracting the end-user payments (Column U) from the simulator's interstate subscriber line revenue requirements [Column J, Figure 18].

The next step develops a new average unit price [Column W] by dividing the total of Column V by the total interstate SLU minutes of use [Column F, Figure 17].

Column X develops the interstate revenue pool based on the simulation of the \$2 end-user charge: for each company, the revenues equal the new average unit price [Column W] multiplied by the company's interstate SLU minutes of use [Column F, Figure 17].

Column Y presents each company's contribution or receipt from the revenue sharing process. To derive Column Y, subtract each company's simulated \$2 end-user interstate revenues [Column X] from its interstate subscriber line revenue requirements [Column J, Figure 18].

State	Number of Local Loops x \$2/month	V End User Interstate Subscriber	W	X Unit Price x Interstate	\$2 End User Charg Interstate Pool: Annual Net Dollars Paid (-)
BOCs	x 12 months	Line Revenue Requirements	Unit Price	SLU Minutes	or Received (+)
AX	no entry	no entry	no entry	no entry	no entry
AL	\$27,054,144	\$18,035,850	\$0.01027	\$15,063,024	\$2,972,826
AR	\$13,422,000	\$17,622,007	\$0,01027	\$8,446,986	\$9,175,021
λZ	\$26,517,864	\$54,575,435	\$0.01027	\$20,679,845	\$33,895,590
CA	\$231,025,872	\$106,841,885	\$0.01027	\$91,939,512	\$14,902,373
CO CT	\$30,590,064	\$50,822,338	\$0.01027	\$26,013,299	\$24,809,039
DC	\$35,416,656 \$16,208,808	\$18,806,150	\$0.01027	\$27,619,262	(\$9,013,112)
DE I	\$6,631,800	\$4,046,841 \$6,689,300	\$0.01027 \$0.01027	\$14,367,466	(\$10,320,625) \$794,889
FL	\$65,744,112	\$149,041,118	\$0.01027	\$5,894,411	\$101,635,943
GA	843,469,064	\$45,772,831	\$0.01027	\$33,567,810	\$12,205,021
HI.	no entry	no entry	no entry	no entry	no entry
IA	\$20,209,248	\$11,108,198	\$0.01027	\$10,640,160	\$468,038
ID Mtn Bell	\$6,205,656	\$8,895,821	\$0.01027	\$4,227,748	\$4,668,073
ID Pacif NW	\$474,072	\$945,512	\$0.01027	\$370,284	\$575,228
IL	\$109,386,168	\$18,080,666	\$0.01027	861,149,254	(\$43,068,588)
IN KS	531,882,944	\$5,571,422	\$0,01027	\$18,363,555	(\$12,792,133)
KY Cinn Bell	\$20,089,344 \$18,624,408	\$15,513,937 \$12,434,063	\$0.01027 \$0.01027	\$12,561,746	\$2,952,191 \$1,803,576
KY S. Cent	\$2,716,656	(\$643,732)	\$0.01027	\$10,630,487 \$997,520	(\$1,641,252)
LA L	\$36,456,288	\$23,596,953	\$0.01027	\$18,697,735	\$4,899,218
MA.	\$64,292,760	\$10,779,092	\$0.01027	\$39, 208, 494	(\$28, 429, 402)
MD	\$47,492,712	\$3,531,431	\$0,01027	\$27,614,536	(\$24,083,105)
MÉ	\$8,984,640	\$6,082,588	\$0.01027	\$5,190,874	\$891,714
MI	\$83,139,792	(\$400,530)	\$0.01027	\$31,660,515	(\$32,061,045)
MN MO	534,011,336	\$17,181,118	\$0.01027	\$17,450,482	(\$269, 364)
no HS	\$40,067,304 \$17,670,312	\$19,065,146	\$0,01027	\$25,719,335	(\$6,654,189)
ir I	\$6,152,040	\$23,215,073 \$9,332,388	\$0.01027 \$0.01027	\$10,815,196 \$4,027,862	\$12,399,876 \$5,304,526
ic I	\$27,325,368	\$14,581,087	\$0,01027	\$15,767,720	(\$1, 186, 632)
Ö.	\$5,113,536	56,815,810	\$0.01027	\$3,022,960	\$3,792,850
NE -	\$9,267,864	\$11,397,579	\$0,01027	\$6,946,983	\$4,450,596
NR j	\$8,791,008	\$15,260,373	\$0.01027	\$8,548,405	\$6,711,968
NJ }	\$84,477,792	\$46,029,033	50.01027	570,720,970	(\$24,691,937)
NM I	\$10,051,872	513,573,061	\$0.01027	\$7,247,560	\$6,325,501
NY I	\$3,283,920 \$189,681,984	\$16,325,865 \$107,570,560	\$0.01027 \$0.01027	\$3,796,221	\$12,529,643 \$6,561,251
OH Ohio Bell	\$67,935,120	(\$925,355)	50.01027	\$101,009,309 \$31,956,795	(\$32,882,150)
OH Cinn Bell	\$13,206,432	(\$1,988,963)	\$0.01027	\$6,716,190	(\$8,705,152)
OK	\$26,279,568	\$25,423,772	50.01027	\$16,691,873	\$8,731,899
OR RC	\$20,373,864	\$21,216,382	\$0.01027	\$12,158,381	\$9,058,002
PA	\$102,052,248	(\$12,695,926)	\$0.01027	\$55,029,311	(\$67,725,236)
15	\$10,062,744	\$1,557,994	\$0.01027	\$7,060,034	(\$5,502,040)
sc sp	\$18,522,960 \$5,164,800	\$12,721,151 \$8,311,977	\$0.01027 \$0.01027	\$10,732,901	\$1,986,250 \$5,281,900
rn i	\$35,934,720	\$14,865,915	\$0.01027	\$3,030,077 \$21,441,326	(\$6,575,411)
X Mtn Bell	\$3,920,520	\$1,998,196	\$0.01027	83,061,514	(51,063,318)
X SW Bell	\$114,566,448	\$60,305,642	\$0.01027	\$53,817,278	56, 488, 364
JT [\$12,615,984	\$7,059,544	\$0.01027	\$8,083,543	(\$1,023,998)
<u>''</u>	\$40,789,176	\$26,654,121	\$0.01027	\$26,551,848	5102,273
/T	54,195,680	\$9,772,606	\$0.01027	\$3,971,358	\$5,801,248
NA HI	\$34,310,184 \$33,852,480	\$21,736,980 (\$2,141,979)	\$0.01027 \$0.01027	\$17,949,109 \$15,589,102	\$3,787,870 (\$17,731,081)
it l	\$13,506,048	\$9,830,454	\$0.01027	58,474,886	\$1,355,568
iŸ	\$4,384,704	\$22,503,071	\$0.01027	\$4, 403, 623	\$18,099,448
rotal		\$1,114,301,852	\$0.01027	\$1,114,301,852	50

©1987 Program on Information Resources Policy, Harvard University.

Figure 22

\$2 End-User Charge: Application of the Simulator

APPENDIX F

XVIII. Application of the Simulator: \$2 End-User Charge Combined with 25% Cost Allocation

Given the above simulation of the \$2 end-user charge, it is easy to calculate the replacement of a SPF% interstate cost allocation with a 25% cost allocation.

Column Z in Figure 23 replaces the SPF% column of the simulator [Column C, Figure 17]. The end-user interstate subscriber line revenue requirements [Column AB] are now the result of interstate revenue requirements based on a 25% cost allocation minus the \$2 monthly charge per loop.

The development of the dollars paid or received in the revenue sharing process [Column AE] now follows the same steps as in the development of the \$2 end-user charge in Figure 22.

	N	\$	νв	NC	ą	AE \$2 End User + 25% Alloc
State BOCs	25% Interstate Cost Allocation	Local Loops x \$2/month x 12 months	End User Interstate Subscriber Line Revenue Requirements	Unit Price	Unit Price x Interstate SLU Minutes	Interstate Pool: Annual Net Dollars Paid (-) or Received (+)
**************************************	25.00 25.00	0.0 entry \$27,054,144 \$21,054,144 \$26,517,864 \$26,517,864 \$30,590,664 \$35,416,656 \$15,744,112 \$6,631,744,112 \$6,744,112 \$6,744,112	\$30,455,603 \$10,456,603 \$10,655,402 \$20,849,717 \$125,374,716 \$22,803,148 \$3,754,368 (\$3,736,368 (\$3,736,368 \$3,7134,402 \$33,778,978	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	814 514 632 514 514 514 632 518 525 632 525 605 524 605 525 525 605 527 525 525 525 525 525 525 525 525 52	\$15,943,666 \$15,943,666 \$19,731 \$921,9,731 \$92,736,538 \$12,236,539 \$17,236,655 \$17,236,655 \$17,236,655 \$17,236,655 \$17,545,533 \$46,555,925
HI HI MEN BOLL ID PACLE NW IN IN KY Clun Bell KY Clun Bell KY Cent KY Cent	25.09 25.09 25.09 25.09 25.09 25.09 25.09 25.09 25.09	\$20,20,48 \$50,20,48 \$6,20,465 \$6,20,466 \$109,386,4012 \$109,386,401 \$20,089,344 \$20,089,344 \$36,456,586 \$21,716,656 \$36,456,286 \$44,295,760	\$4,800,900 \$4,803,400 \$4,803,400 \$14,600,807 \$11,607,105 \$10,607,9	20 00 00 00 00 00 00 00 00 00 00 00 00 0	910,00 entrry \$4,073,2005 \$4,073,2005 \$4,073,56,811 \$56,811 \$17,695,314 \$10,695,314 \$10,243,684 \$10,244,884 \$10,745,781,894	(564, 313, 455) (564, 313, 455) (564, 313, 455) (55, 823, 216) (55, 823, 216) (50, 747, 313 (50, 747, 313 (528, 961, 921)
	5555555555555555 1445555555555555555555	\$60,000 \$60,100 \$60,100 \$60,100 \$60,100 \$60,100 \$60,100 \$60,100 \$60,100 \$60,100 \$60,00	\$45,615,364 \$42,615,367 \$18,012,726 \$18,012,726 \$18,013,516 \$26,387,215 \$4,116,148 \$51,117,474 \$51,117,383 \$5,506,853 \$22,485,015 \$8,527,686		9.50 80.90 9	(412, 7), 353, 714, 218, 811, 714, 218, 811, 714, 218, 811, 199, 199, 199, 199, 199, 199, 1
NY OR Ohlo Bell OH Cinn Bell OK OR PA PA PA PA PA PA PA PA PA PA PA PA PA	55555555555555555555555555555555555555	\$189,681,984 \$13,206,432 \$26,132 \$26,29,588 \$20,373,864 \$102,052,246 \$10,052,744 \$10,052,746 \$35,940	\$49,690,708 \$23,110,756 \$73,034,695 \$17,244,400,590 \$6,913,877 \$50,0217 \$5,044,880 \$27,566,074	06600 05 6 06600 05 6 06600 05 6 06600 05 6 06600 05 6 06600 05 6	\$97733,956 \$97733,956 \$1074607 \$16.064518 \$13.715,993 \$53.027,000 \$53.027,000 \$10,342,371 \$70,542,371	(97, 645, 250) (57, 643, 251) (57, 437, 116) (54, 437, 116) (57, 68, 107) (846, 106, 123) (155, 927, 923) 511, 191, 223 52, 125, 056
TX Mtn gell TX SW Bell UX SW Bell VA WA WY WY	25.00 25.00	\$1,920,520 \$11,656,448 \$12,615,984 \$40,799,176 \$40,199,660 \$34,310,184 \$33,855,480 \$13,506,048 \$4,384,704	\$822,041 \$96,631,728 \$5,206,053 \$55,331,703 \$4,198,723 \$16,457,175 \$16,37,235 \$15,375,762 \$8,899,770	06000 08	\$2,950,117 \$50,117 \$50,11859,069 \$7,789,069 \$25,585,726 \$17,296,885 \$17,296,885 \$15,021,873 \$81,66,516 \$4,243,392	(\$2, 126, 076, \$44,772, 659 (\$4,772, 659 (\$254, 023, \$51, 867 \$831, 867 (\$7, 584, 638) \$7, 209, 245 \$4, 656, 378
Total			\$1,073,756,581	06600.0\$	\$1,073,756,581	Q in

©1987 Program on Information Resources Policy, Harvard University.

\$2 End-User Charge Combined with 25% Cost Allocation: Application of the Simulator

Figure 23

APPENDIX G

XIX. Application of the Simulator: French Proposal

Figure 24 applies the simulator to the French proposal. Under this plan, the end user picks up the difference between the SLU% and SPF% interstate cost allocations.

To develop the SLU% allocation [Column AF], multiply the subscriber line revenue requirement [Column A, Figure 17] by the interstate SLU% [Column D, Figure 17]. Similarly, the SPF% allocation [Column AG] is the subscriber line revenue requirement [Column A, Figure 17] multiplied by a 25% interstate cost allocation [Column Z, Figure 23].

The end user pays the difference between SPF and SLU revenue requirements [Column AH]. Column AI shows the average end-user charge per loop. The remaining interstate subscriber line revenue requirements [Column AF] now determine the interstate subscriber line revenue requirements.

Column AJ provides a check to see if the simulation of the French proposal exceeds a \$6 monthly, per-loop end-user charge [Column AH minus the product of \$72 times the number of local loops, Column B, Figure 17]. Because all the results are negative, the simulation falls below a \$6 end-user charge, which if instituted would substantially eliminate the need for revenue sharing.*

The application of the simulator then follows the pattern discussed in the above simulations: calculations of the average unit price of \$0.00842 [Column AK], the interstate revenues [Column AL], and the dollars paid or received in the revenue sharing process [Column AM].

^{*}Assuming the Universal Service Fund assists those companies with extremely high costs.

	AF	P P C	AH	Average	2	Ä	A.L.	Ž.
State BOC#	Subscriber Line Revenue Requirement x 511 4	Subscriber Line Revenue Requirement x 254 Interstate Cost Allocation	Total End User Interstate Recovery	End User Interstate Recovery per Loop	End User Recovery Less End User Charge	Unit Price	Unit Price x Intertate SLU Minutes	Interaction (Coposal: Interacte Pool: Annual Net Dollars Paid (-) or Received (+)
A.	no entry	no entry	no entry	no entry	no entry	no entry	no entry	no entry
AL.	\$13, 803, 059 \$9, 746, 374	\$57,512,747	\$43,709,688 \$20,335,028	536.36	(\$37, 452, 744) (\$19, 930, 972)	50,00842	\$12,351,045 \$6,926,173	\$1,452,014
A2	\$21,410,147	\$47,367,581	\$25,957,434	\$23.49	(\$53,596,158)	\$0.00042	\$16, 956, 603	AA . 400 . 544
58	\$22,222,808	553, 420, 212	531,197,464	\$24.48	(5417,936,362)	50,00842	\$75, 386, 530 \$21, 329, 811	55, 872, 804
5	518, 649, 882	843,171,024	\$24, \$21, 141	\$16.62	(501,728,827)	\$0.00842	\$22,810,624	(\$4, 160, 741)
2 5	56, 236, 345	512,472,691	\$6, 236, 345	59.23	(\$42,390,079)	50,00842	511, 780, 718	(\$5,544,372)
11	\$56, 854, 914	\$157,930,316	\$101,075,402	536.90	(\$96, 156, 934)	50.00842	\$38,870,248	517, 984, 666
55	526, 639, 372	\$83,248,036	556,608,664	831,25	(\$73,798,528)	50.00842	\$27,524,191	(5884, 820)
I.	\$9,883,453	529, 769, 436	\$19,885,983	523.62	(\$40,741,761)	\$0,00B42	\$6,724,484	51,158,969
ID Mtn Bell	500, 200, 400 500, 500, 500	\$11,039,092	56,579,299	\$25.45	(\$12,037,669)	\$0.00842	33, 466, 575	\$993,218
IL PACIF NW	539, 182, 412	5123,994,975	584,812,563	\$10,61	(5243,345,941)	50.00842	\$303, 617 \$50, 139, 815	(810, 957, 403)
N.	\$11,901,387	543, 755, 101	\$31,853,713	523.98	(\$63,795,119)	\$0,00842	\$15,057,342	(\$3, 155, 955)
KY Clan Bell	\$10,141,542	\$39, 615, 397	529,473,655	\$37.98	(\$26,399,369)	\$0.00842	58,716,552	\$1.424.990
KY S, Cent	\$700,249	54,318,592	\$3,610,342	531.90	(\$4,539,626)	\$0.00842	\$817,925	(\$109, 676)
5 5	524, 057, 775	572,463,178	548,405,403	818.07	(814,472,873)	50.00842	\$15,331,356	\$2,462,197 1\$8.091,540)
£	\$16,680,970	\$61,327,096	\$44,646,126	\$22.56	(\$97,032,010)	\$0.00842	\$22, 642, 757	(\$5, 961, 707)
E I	54, 730, 409	\$14,600,027	5100.790.014	\$26.35 \$28.95	(\$17,084,302)	\$0.00842	54, 256, 296	9474,110
N.	\$14,775,058	\$52,024,852	\$37,249,794	\$26.29	(564, 784, 214)	\$0.00842	\$14,308,661	5466, 397
QE I	518, 264, 849	457,077,655	838,812,805	\$23,25	(541,389,107)	90.00842	821,008,772	(\$2, 823, 923)
e ic	\$4,353,712	\$10,268,188	55, 914, 476	523.07	(\$12,541,644)	50.00842	53,302,677	\$1,996,792
Ž.	\$13,192,773	548,502,642	\$35,310,069	\$31,01	(\$46,666,035)	\$0.00842	\$12,928,866	\$263,907
2 2	\$6,294,647	\$14,845,865	SB, 551, 21B	\$22.14	(519, 252, 374)	50.00842	\$5,476,700	5598,413
£:	58,935,119	\$15,299,861	56, 364, 742	\$17,38	(\$20,008,282)	50.00842	\$7,009,332	\$1,925,786
2 1	56,802,225	\$18,285,552	511, 483, 326	\$27.42	(519,672,290)	50.00842	\$5,942,694	(44, 556, 510) \$856, 531
2 1	\$5,970,928	677,856,484	\$1,885,556	511.78	(\$7,966,204)	\$0.00842	\$3,112,742	\$2,858,186
ohlo	520, 758, 460	891,045,876	\$70,287,416	524.83	(\$133,517,944)	50.0042	526, 203, 257	(55, 444, 767)
OH Cinn Bet1	53,474,977	515,241,127	\$11,766,150	\$21.38	(\$27,853,146)	50.00842	\$5,506,993	(\$2,032,016)
, a	513, 519, 508	AUD 1720 1000	522,812,041	526.87	(538,309,551)	50.00842	59, 686, 633	\$1,632,875 \$1,993,050
2	\$10,511,915	\$100,971,125	\$78,459,210	518.45	(\$227, 697, 534)	50.00842	\$45,121,719	(514, 609, 804)
. U	54, 122, 073	540,056,553	530,122,527	516.32	(523,347,344)	50,00842	55, 768, 931	(\$1,666,858)
88	54, 165, 549	\$10,209,680	\$6,044,130	\$28.09	(89,450,270)	\$0.00842	\$2,484,535	51,681,014
21	\$15,748,197	\$63,500,794	547,752,597	4531.89	(\$60,051,563)	\$0.00842	\$17, \$80, 985	(51,832,788)
TX SW Bell	502 421, 456	\$211,198,176	9163,044,992	534.16	(\$180, 654, 352)	50.00842	544, 127, 903	(\$765,050) 84.025,282
5	\$5, 489, 187	\$17,822,037	\$12,332,849	\$23.46	(825, 515, 103)	\$0.00942	\$6,629,165	(51, 138, 977)
¥.	54,902,331	58,394,403	53,492,072	519.98	(59,094,968)	\$0.00842 \$0.00842	\$21,771,398	(51, 141, 684)
¥:	515, 636, 346	550, 767, 359	\$35, 131,012	524.57	(567, 799, 540)	\$0.00842	\$14,717,514	\$918,832
ī.	67, 901, 901	528,881,810	\$20,910,430	537.16	(\$19, 607,714)	\$0.00842	\$12, 782, 407	(52, 872, 876)
¥.	58,130,098	513,284,474	\$5,154,376	\$28.21	(911, 666,74)	\$0.00842	53, 610, 786	\$4,519,312
Total	5913, 680, 616					\$0.00842	\$913, 680, 616	000
			T	,				

©1987 Program on Information Resources Policy, Harvard University.

Figure 24 French Proposal: Application of the Simulator

APPENDIX H

XX. Acronyms

AT&T	American Telephone & Telegraph
BOC	Bell Operating Company
CCL	Carrier Common Line
CPE	Customer Premises Equipment
CSR Ratio	Composite Station Rate Ratio
FCC	Federal Communications Commission
GTE	General Telephone and Electronics
LEC	Local Exchange Carrier
NECA	National Exchange Carrier Association
NTS	Non-Traffic Sensitive
ROR	Rate of Return
SLU	Subscriber Line Use
SPF	Subscriber Plant Factor
TS	Traffic Sensitive
USF	Universal Service Fund
WATS	Wide Area Telecommunications Services

XXI. Notes

New England Telephone Company, personal communication, October 14, 1986.

National Association of Regulatory Utility Commissioners (NARUC), NARUC-FCC Committee on Communications, Separations

Manual: Standard Procedures for Separating Telephone Property

Costs, Revenues, Expenses, Taxes and Reserves, Washington,

D.C., February 1971 [hereinafter cited as Separations Manual],
codified at Title 47, Part 67, Code of Federal Regulations
(1982). The FCC incorporated the Separations Manual in

Prescription of Procedures for Separating and Allocating Plant
Investment, Operating Expenses, Taxes and Reserves Between the
Intrastate and Interstate Operations of Telephone Companies,
FCC Docket No. 18866 [hereinafter cited as Ozark Plan]:

Notice of Proposed Rulemaking and Order Convening

Joint Board, 23 FCC 2d 465 (1970);

Further Notice of Proposed Rulemaking, 25 FCC 2d

123 (1970);

Recommended Report and Order of FCC-NARUC Joint

Board on Jurisdictional Separations, 26 FCC 2d 248 (1970);

Report and Order, 26 FCC 2d 247 (1970).

In the Matter of Petition to Amend Part 69 of the Commission's Rules Concerning the Mandatory NECA Pool [hereinafter cited as Bell Atlantic Proposal]:

Bell Atlantic Petition to Amend Part 69 of the Commission's Rules, October 28, 1985.

4MTS and WATS Market Structure Inquiry, CC Docket No. 78-72 [hereinafter cited as End User Charge]:

Phase I: Third Report and Order (Access Charge Order), 93 FCC 2d 241 (1982). Proposes an access charge plan and invites comments; introduces end user charges of \$2 per month minimum for residential users and \$4 per month minimum for business customers; establishes the National Exchange Carrier Association (NECA) to prepare and file access charge tariffs and to administer revenue pools.

The Access Charge Order came four years after the FCC began the inquiry to determine whether the MTS and WATS markets should be served by the traditional industry or by a group of competitors. As part of the process, the FCC had established a Federal-State Joint Board to handle changes in the federal cost allocation between local and interstate carriers. Before issuing the Access Charge Order, the FCC had proposed four separate access charge plans for consideration.

Final Rule (Reconsideration Order), 48 Fed. Reg. 42984 (September 21, 1983). FCC modifies the Access Charge Order to provide for a \$6 minimum end user charge per month for business customers; orders that the residential end user charge begin at \$2 in 1984 and increase to \$4 by 1986; introduces transitional \$2 end user charge per line for embedded Centrex-CO service from 1984 to 1986; proposes to monitor the impact of end user charges on low-income subscribers and to consider assistance for high-cost telephone companies; aff'd in part, remanded in part, NARUC v. FCC, No. 83-1225, 737 F.2d 1095 (D.C. Cir. 1984); reh'g denied, August 23, 1984; petition for cert. filed, September 7, 1984, No. 84-504;

Memorandum Opinion and Order (Second

Reconsideration Order), 49 Fed. Reg. 7810

(March 2, 1984). Defers end user charges for residential and single line business customers until June 1, 1985, and caps the charges at \$4 at least until 1990; leaves the \$2 Centrex-CO end user charge intact; agrees to conduct supplemental proceedings to devise exemptions for customers who cannot afford to pay end user charges; begins reevaluation of the end user charge transition plan and explores assistance to customers of small telephone companies.

Decision and Order, 50 Fed. Reg. 939 (January 8, 1985). FCC implements \$1 end user charge per month for residential and single-line business customers effective June 1985 with an increase to \$2 in June 1986, after which the charge is to be frozen at that level; directs Joint Board to study lifeline assistance further; solicits more comments on the effect of end user charges on small business customers.

Memorandum Opinion and Order, FCC Order No. 85-280 (May 29, 1985). Denies petitions of small businesses for reconsideration and other relief from the subscriber line charge;

Recommended Decision and Order, 50 Fed. Reg. 31750 (June 25, 1985), at p. 31754.

Order Inviting Comments, FCC Slip Opinion (February 21, 1986). The Rochester proposal contains an interstate end-user charge of \$3.54 per line for residential and single line business customers. Unlike the above Access Charge Plan, these end-user charges are not part of the NECA pool. The CCL revenues continue to be pooled.

In the Matter of Amendment of Part 67 of the Commission's Rules and Establishment of a Joint Board, Docket No. 80-286 [hereinafter cited as 25% Interstate Cost Allocation]:

Recommended Interim Order, 46 Fed. Reg. 63354

(December 31, 1981). Freezes SPF (subscriber plant factor) at the 1981 annual average level to prevent further growth in the interstate NTS (non-traffic sensitive) cost allocation;

Decision and Order, 89 FCC 2d 1 (1982);

Memorandum Opinion and Order, reconsideration

denied, 91 FCC 2d 558 (1982), appeals pending
sub nom., MCI Telecommunications Corp. v. FCC

(D.C. Cir. 1982). Adopts both the interim SPF
freeze with a number of technical modifications and a plan to phase CPE (customer premises equipment) out of the rate base;

Second Recommended Decision and Order, 48 Fed. Reg. 46556 (October 13, 1983). Proposes replacing the frozen SPF as the basis for allocating most NTS plant. The proposed plan is a 25% interstate allocation factor to be uniformly applied in all study areas. The transition from frozen SPF to the 25% base factor apportionment is to begin in 1986 and to be implemented in four steps;

Decision and Order, 96 FCC 2d 781 (1984). Changes procedures for allocating the NTS and TS (traffic-sensitive) plant.

6 In the Matter of Bell Atlantic's Petition to Amend Part 69 of the Commission's Rules Concerning the Mandatory NECA Pool [hereinafter cited as French Proposal]:

Comments of Shenandoah Telephone Company, December 9, 1985.

Federal Communications Commission, memorandum on data on NTS costs sent to the Committee on Energy and Commerce, U.S. House

of Representatives from Jack Smith, Chief, Common Carrier Bureau, FCC, September 20, 1983. Additional data on 1980 SLU minutes of use from FCC Common Carrier Bureau [hereinafter cited as 1980 FCC Data].

8 End User Charge.

9"Winners and Losers: NECA's Mandatory Carrier Common Line Pool Favors FLA, Hurts NJ," Communications Daily, July 17, 1985, p. 1.

Data for simulator, Figure 20, from 1980 FCC Data.

- All BOCs are reimbursed for interstate local loop costs from revenues in the pool. The residual revenue is distributed among the BOCs in proportion to net investment so that all BOCs have the same interstate rate of return. For greater details on this process, see Carol Weinhaus and Anthony G. Oettinger, Behind the Telephone Debates, Volume 3:

 Federal/State Costing Methods: Who Controls the Dollars.

 Program on Information Resources Policy, Harvard University, Cambridge, MA, June 1986, pp. 59-62.
- 11980 FCC Data.
- 12 Bell Atlantic Proposal.
- 13 End User Charge.
- 14AT&T.
- 15 French Proposal.
- 16 AT&T.
- End User Charge, Phase I; and In the Matter of Amendment of
 Part 67 of the Commission's Rules and Establishment of a Joint
 Board, CC Docket No. 80-286:

Decision and Order, 50 Fed. Reg. 939 (January 8, 1985) at note 7. The FCC, with minor changes, adopts the Joint Board's earlier recommendations on subscriber line charges for residential and single line business customers, tariff flexibility to combat bypass, assistance to aid small or high-cost companies, and assistance for lifeline service.

¹⁸ Volume 3, Behind the Telephone Debates.

Telecommunications Reports, Vol. 52, No. 16, April 21, 1986, at p. 12.

 $^{^{20}}$ Unity l-A Agreement, June 12, 1986 (released June 24, 1986).

!
,
• ·
i i
!
•
•
:
!